

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CROSS-PLATFORM MOBILE APPLICATION
DEVELOPMENT: A PATTERN-BASED APPROACH

by

Christian G. Acord
Corey C. Murphy

March 2012

 Thesis Advisor: Thomas Otani
 Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Cross-Platform Mobile
Application Development: A Pattern-Based Approach

5. FUNDING NUMBERS

6. AUTHOR(S)
Christian G. Acord and Corey C. Murphy
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number ______N/A__________.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Mobile devices are fast becoming ubiquitous in today’s society. New

devices are constantly being released with unique combinations of hardware and
software, or platforms. In order to support the ever-increasing number of
platforms, developers must embrace some method of cross-platform development
in which the design and implementation of applications for different platforms
may be streamlined.

This thesis compares and contrasts two platforms, iOS and Android
smartphones, and discusses how one might apply the Model, View, Controller
pattern in order to minimize the inherent differences between the platforms.
Furthermore, this thesis describes the Unified Design Process that can be used
to implement native iOS and Android applications from a single design process.
This design process reduces the amount of time required for the development of
applications and maintains platform specific UI styles for the different
platforms.

The authors used this process to design and build a functional prototype
of the NPS Muster application on both platforms. This application is capable
of displaying announcements and allowing NPS students to conduct daily
musters.
14. SUBJECT TERMS
Mobile development, Cross-platform development, Android development,
iPhone development

15. NUMBER OF
PAGES

157
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CROSS-PLATFORM MOBILE APPLICATION DEVELOPMENT:
A PATTERN-BASED APPROACH

Christian G. Acord
Lieutenant, United States Navy

B.S., United States Naval Academy, 2006

Corey C. Murphy
Lieutenant, United States Navy
B.S., Duquesne University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2012

Authors: Christian G. Acord
 Corey C. Murphy

Approved by: Thomas Otani
Thesis Advisor

John Gibson
Thesis Co-Advisor

Dr. Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Mobile devices are fast becoming ubiquitous in today’s

society. New devices are constantly being released with

unique combinations of hardware and software, or platforms.

In order to support the ever-increasing number of

platforms, developers must embrace some method of cross-

platform development in which the design and implementation

of applications for different platforms may be streamlined.

 This thesis compares and contrasts two platforms, iOS

and Android smartphones, and discusses how one might apply

the Model, View, Controller pattern in order to

minimize the inherent differences between the platforms.

Furthermore, this thesis describes the Unified Design

Process that can be used to implement native iOS and

Android applications from a single design process. This

design process reduces the amount of time required for the

development of applications and maintains platform specific

UI styles for the different platforms.

 The authors used this process to design and build a

functional prototype of the NPS Muster application on both

platforms. This application is capable of displaying

announcements and allowing NPS students to conduct daily

musters.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PLATFORM DIFFERENTIATION1
B. CROSS-PLATFORM DEVELOPMENT1
C. PROBLEMS WITH CROSS-PLATFORM DEVELOPMENT2
D. CURRENT SOLUTIONS3
E. UNIFIED DESIGN PROCESS5

II. BACKGROUND ..7
A. CROSS-PLATFORM DEVELOPMENT7
B. ANDROID PLATFORM8

1. Architecture9
2. Language11
3. Development11

C. IPHONE PLATFORM11
1. Architecture13
2. Language15
3. Development15

D. DESIGN PATTERNS16
1. Model-View-Controller Design Pattern18
2. MVC and Mobile Applications20

E. CONCLUSION ..20

III. NAVIGATION AND USER INTERFACE COMPONENTS23
A. UI BUILDING BLOCKS23

1. View ...24
2. Buttons24
3. Text Fields25
4. Spinners26
5. Lists ..26

a. Selectable List View27
b. Multi-Select List View28

6. Switches28
7. Dialogs28
8. Radio Buttons29
9. Progress, Sliders, and Loading Activity30

B. NAVIGATION ..31
1. Null Navigation31
2. Stack Navigation33
3. Horizontal Navigation34
4. Composite Navigation34

C. CONCLUSION ..35

IV. IOS DEVELOPMENT ..37
A. INTEGRATED DEVELOPMENT ENVIRONMENT37

 viii

B. NAVIGATION ..38
1. Stack Navigation38
2. Horizontal Navigation39
3. Composite Navigation40

C. MODEL-VIEW-CONTROLLER DESIGN PATTERN41
1. Model ..43
2. View ...44
3. Controller45

D. LIFECYCLES ..47
1. Application Lifecycle50
2. ViewController Lifecycle53

E. CONCLUSION ..53

V. ANDROID DEVELOPMENT55
A. INTEGRATED DEVELOPMENT ENVIRONMENT55
B. NAVIGATION ..56

1. Stack Navigation57
2. Horizontal Navigation59
3. Composite Navigation59

C. MODEL VIEW CONTROLLER PATTERN61
1. Model ..62
2. View ...64
3. Controller64

D. LIFECYCLES ..68
1. Application68
2. Activity69

a. onCreate71
b. onRestart71
c. onStart71
d. onResume71
e. onPause71
f. onStop72
g. onDestroy72
h. onSaveInstanceState72

E. CONCLUSION ..73

VI. DESIGN PROCESS ...75
A. IDENTIFY REQUIREMENTS75
B. IDENTIFY TASKS77
C. IDENTIFY REQUIRED SCREENS78

1. Login Screen80
2. Announcement Screen80
3. Muster Screen82
4. Intranet Screen83

D. DESIGN NAVIGATION HIERARCHY84
1. Identify How Screens Will Interact85
2. Draw UI Navigation Diagram86

 ix

3. Draw a Data Flow Diagram87
E. DESIGN CLASSES88

1. Models89
a. Profile90
b. Announcement91

2. Views ..92
3. Controllers93

a. Lifecycles94
b. Interface95
c. Logic98
d. Unified Controller Diagram99

F. IMPLEMENTATION100
1. Create a New Project100
2. Add Required Controllers and Views102
3. Edit Required Views109
4. Implement Navigation111
5. Implement Models119
6. Add Functionality124

G. CONCLUSION126

VII. SUMMARY AND CONCLUSION127
A. FUTURE WORK128

1. Security128
2. Synchronizing Announcements128
3. Additional Platforms129
4. System Login129
5. Web Services130
6. Cross-Platform Programming with Web

Applications130
7. Cross-Platform Programming with OpenGL130

LIST OF REFERENCES ...133

INITIAL DISTRIBUTION LIST137

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

 Android OS Branching (From [1])..................9 Figure 1.
 Android Architecture (From [2]).................10 Figure 2.
 iPhone Architecture.............................14 Figure 3.
 MVC Pattern (From [4])..........................18 Figure 4.
 Example View Structures.........................24 Figure 5.
 Android and iOS Buttons.........................25 Figure 6.
 Android and iOS Spinners........................26 Figure 7.
 Android and iOS Lists...........................27 Figure 8.
 Android and iOS Switches........................28 Figure 9.
 Android and iOS Dialogs.........................29 Figure 10.
 Android and iOS Radio Button....................29 Figure 11.
 Android and iOS Progress Bars...................30 Figure 12.
 Android and iOS Slider Bars.....................30 Figure 13.
 Android and iOS Activity........................31 Figure 14.
 Null Navigation.................................32 Figure 15.
 Stack Navigation................................33 Figure 16.
 Horizontal Navigation...........................34 Figure 17.
 Composite Navigation............................35 Figure 18.
 iOS Stack Navigation Screenshots................39 Figure 19.
 iOS Composite Navigation Screenshot.............40 Figure 20.
 iOS Model, View, Controller Pattern (From [12]).42 Figure 21.
 Heat Beat iOS Screen Shots......................43 Figure 22.
 Application Lifecycle (From [14])...............48 Figure 23.
 Application Launch into Background (From [14])..49 Figure 24.
 Loading a View into Memory (From [16])..........51 Figure 25.
 Unloading a View from Memory (From [16])........52 Figure 26.
 Android Intent..................................57 Figure 27.
 Android Stack Navigation Screenshots............58 Figure 28.
 Android Parallel Navigation Screenshots.........60 Figure 29.
 Heart Beat Android Screen Shots.................62 Figure 30.
 Android Heart Model.............................63 Figure 31.
 Android Get Extra Function......................66 Figure 32.
 Android setConnections Method...................66 Figure 33.
 Android setOnClickListeners Method..............67 Figure 34.
 Application Lifecycles (From [18])..............70 Figure 35.
 Login Screen Design Document....................80 Figure 36.
 Announcement List Design Document...............81 Figure 37.
 Announcement Detail Design Document.............82 Figure 38.
 Muster Screen Design Document...................83 Figure 39.
 Intranet Screen Design Document.................84 Figure 40.
 UI Navigation Diagram...........................87 Figure 41.
 Data Flow and Navigation Diagram................88 Figure 42.
 Profile Class Diagram...........................91 Figure 43.

 xii

 Announcement Class Diagram......................92 Figure 44.
 Separated Login Controller Diagrams.............94 Figure 45.
 Android setConnections Method...................95 Figure 46.
 Android setOnClickListener Method...............96 Figure 47.
 iOS IBOutlet Link...............................97 Figure 48.
 iOS IBAction Linking............................98 Figure 49.
 Login Controller Unified Diagram...............100 Figure 50.
 Default Android Activity.......................103 Figure 51.
 Default Android Class..........................103 Figure 52.
 Default View XML...............................104 Figure 53.
 Android Functional Areas.......................105 Figure 54.
 Default iOS Header File........................106 Figure 55.
 Default iOS Implementation File................107 Figure 56.
 iOS Functional Areas...........................108 Figure 57.
 iOS LoginController header file................109 Figure 58.
 Finished View Code.............................110 Figure 59.
 Finished View Graphical........................110 Figure 60.
 LoginController Code...........................112 Figure 61.
 TabController Code.............................114 Figure 62.
 TabController View Code........................115 Figure 63.
 NPS Muster Application AppDelegate.............116 Figure 64.
 iOS TabController Header File..................117 Figure 65.
 iOS TabBar Interaction Code....................118 Figure 66.
 iOS initWithProfile............................118 Figure 67.
 iOS Stubbed Login Method.......................119 Figure 68.
 hasReadAnnounce() Android Method...............120 Figure 69.
 hasReadAnnounce iOS Method.....................120 Figure 70.
 muster() Android Method........................121 Figure 71.
 muster iOS Method..............................121 Figure 72.
 updateAnnounce() Android Method................122 Figure 73.
 updateAnnounce iOS Method......................123 Figure 74.
 login() Android Method.........................124 Figure 75.
 login iOS Method...............................125 Figure 76.
 setView() Android Method.......................125 Figure 77.
 setView iOS Method.............................125 Figure 78.

 xiii

LIST OF TABLES

Table 1. NPS Muster Application Requirements.............77
Table 2. NPS Muster Application Tasks....................78

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

ADT Android Development Tools

API Application Programming Interface

GUI Graphical User Interface

HTML5 HyperText Markup Language version 5

IB Interface Builder

IDE Integrated Development Environment

MVC Model View Controller

NIB NeXT Interface Builder

NPS Naval Postgraduate School

OpenGL Open Graphics Library

OS Operating System

OTA Over the Air

SDK Service Development Kit

UI User Interface

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

 We would like to thank Dr. Thomas Otani and Mr. John

H. Gibson, our advisor team. Thank you for your constant

attention and motivation.

 Corey would like to thank his lovely wife, Cathleen,

without her support, encouragement, and understanding of

the long nights spent writing, we would not have completed

this thesis.

 Christian would like to thank his parents for their

support and motivation without it he would not have made it

this far. He would also like to thank his friends for

helping him remember to take a little time for himself

every now and again.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Mobile devices are fast becoming ubiquitous in today's

society. The capabilities of these devices are increasing

seemingly in accordance with Moore’s Law, becoming more

powerful by the year. New devices are constantly being

introduced to the market, each with a unique combination of

computer architecture and software framework, or platform.

As platform specifications are modified and improved upon,

the gap between the platforms grows more pronounced.

A. PLATFORM DIFFERENTIATION

There are a great number of mobile platforms currently

on the market. In the purest sense each mobile device can

be considered a separate platform. Each device, even if it

is running the same Operating System (OS), is built upon

different hardware. For the purposes of this thesis, we

will classify platforms in a more general fashion,

identifying them by the OS that they are running. This will

limit the discussion of platforms to categories such as

Android, iOS, and Windows Phone platforms. Additionally we

will limit the scope of this thesis to discussions related

to Android and iOS platforms.

B. CROSS-PLATFORM DEVELOPMENT

Cross-Platform Development is the process of writing

software applications for multiple computing platforms.

Designing applications for multiple platforms is not a

trivial task. There are several issues that must be

overcome in order to release applications for multiple

platforms. The most obvious difference between platforms is

 2

the language with which the applications are written.

Additionally, developers should be aware of different

hardware capabilities such as external SD cards and forward

facing cameras. Finally, each platform has developed

individual User Interface (UI) styles that users have

become accustomed. Users expect that each application will

adhere to the platform standard UI style. This final aspect

all but mandates that cross-platform applications maintain

separate UIs for each targeted platform.

In order to remain relevant in today’s application

marketplaces, developers must embrace cross-platform

development concepts to ensure that the applications are

targeted to as many different platforms as possible. To

that end it becomes necessary that any application

developed for one platform also be made available for other

existing with the ability to be ported to future platforms.

C. PROBLEMS WITH CROSS-PLATFORM DEVELOPMENT

Applications targeted to iOS and Android platforms are

written with completely different languages. Applications

targeted for iOS are written in Objective-C while those

targeted for Android devices are written in Java. The most

obvious difference between platforms is the language with

which the applications are written. Additionally,

developers should be aware of different hardware

capabilities such as external SD cards and forward facing

cameras. Finally, each platform has developed individual

User Interface (UI) styles that users have become

accustomed. Users expect that each application will adhere

to the platform standard UI style. This final aspect all

 3

but mandates that cross-platform applications maintain

separate UIs for each targeted platform.

In order to remain relevant in today’s application

marketplaces, developers must embrace cross-platform

development concepts to ensure that the applications are

targeted to as many different platforms as possible. To

that end it becomes necessary that any application

developed for one platform also be made available for other

existing with the ability to be ported to future platforms.

Each platform consists of separate hardware profiles,

including processor and memory, as well as screen size and

other options such as cameras and Bluetooth. These hardware

profiles cause the platform specific APIs to differ between

platforms.

In addition to language and hardware differences, each

platform provides unique user interface guidelines with

which users have become accustomed and developers are

expected to maintain in any application they develop

These factors result in increased costs in terms of

time and money spent on the re-design process and the

opportunity cost of that development time not being spent

addressing new application design, or at the least,

maintaining and upgrading the already released application.

Additionally, the second design process often results in

drastically different code bases that increases maintenance

costs and may lead to applications with different features.

D. CURRENT SOLUTIONS

An ideal method to accomplish this cross-platform

dilemma is the ability to design and write a single

 4

application that runs on all platforms, or an interpretive

cross-platform solution. OpenGL and Web Applications are

both examples of this solution. These interpretive

solutions can be run directly on each platform through the

use of an interpreter. In the mobile realm the interpreters

for Web Applications are the web browsers and for OpenGL it

is the graphics libraries.

These solutions fall short of the desired cross-

platform solution because they do not adhere to the

platform specific UI Styles. A single UI is developed which

may either correspond only to a single platform, or

implement a platform neutral UI. Users from one or more

platforms will be forced to adhere to a UI and navigation

style that is unfamiliar to them.

Products such as Appcelerator’s Titanium and Corona

provide third party APIs that result in separate but

related applications tailored to specific platforms. While

they have shown extremely promising results, we decided to

pursue a solution that relied only on native platform APIs.

We believe that developers are better able to handle

security issues related to their applications by using

native APIs and implementing applications in native

platform languages without the aid of third party tools.

While these methods are accepted, and potentially cost

efficient solution to the problem, we find that it lacks

the customization that users of different platforms have

come to expect from applications running on their devices.

OpenGL and Web Applications force developers to choose a

single UI and navigation schema that will be presented to

users of any platform on which the application is hosted.

 5

These neutral UIs and navigation schemas can often lead to

user confusion on one or more of the platforms, as they do

not provide common “look-and-feel” features with which

users have become accustomed. Cross-platform applications

should utilize interfaces specific to the platforms they

are targeting to avoid such user confusion.

Short of relying on such “neutral” navigation

solutions, we need to understand key similarities and

differences of the platforms we plan to use. By identifying

key similarities between the platforms we will be able to

leverage those similarities to develop a design process

that will use the aspects common between platforms while

minimizing the differences, allowing for applications to be

built for multiple platforms from a common set of design

documents.

E. UNIFIED DESIGN PROCESS

In this thesis we developed a Unified Design Process

that simplifies the design process for cross-platform

applications. We first discuss the concept of Design

Patterns and how they may be used to solve commonly

occurring design problems. We then discuss common

approaches to mobile development, including common aspects

of mobile application development, including navigation

concepts and identification of individual screens that will

be presented to users. Using these concepts, we discuss how

to apply a set of patterns to different platforms. Finally,

building on that knowledge, we lay out a design process,

the Unified Design Process, which can be used to create

applications that may be implemented on multiple platforms.

We use this process to design and build the NPS Muster

 6

application, an application that could be used for NPS

students to read announcements and conduct daily musters.

 7

II. BACKGROUND

This section provides an introduction into the Android

and iPhone platforms, integral differences, and the issues

related to the topic of cross-platform development of the

two platforms. Additional considerations specific to

platform architectures, Integrated Development Environments

(IDEs), and design patterns will also be addressed.

A. CROSS-PLATFORM DEVELOPMENT

Cross-Platform Development is the process of writing

software applications for multiple computing platforms.

These platforms can be described as a combination of

computer architecture and software framework required to

run software applications. An example of a platform would

be the Microsoft Windows 7 Operating System (OS) running on

the x86 architecture. The scope of this thesis will be

limited to the Android OS and iOS mobile platforms.

Cross-Platform Development has been a topic of

interest in Computer Science since the discipline’s

inception. With the release of Apple’s iOS and,

subsequently, Android OS, there has been an increase in the

number of developers releasing applications tailored for

specific platforms. It has become the expected norm for

applications to be available on multiple platforms, but the

differences inherent in the mobile platforms force

developers to redesign their applications to work on

different platforms. This can result in a significant

increase of costs due to time and duplication of effort.

 8

There are two ways of achieving a Cross-Platform

Development solution. First is a developmental solution,

which requires developers to design, build, and compile

applications for each platform separately. The second is an

interpretive solution, which can be run directly on each

platform through the use of an interpreter. In the mobile

realm an interpretive solution would be OpenGL or WebApps.

Each platform has native software that will allow these

types of applications to run. This thesis will focus on how

to solve the mobile cross-platform problem developmentally.

B. ANDROID PLATFORM

Android OS version 1.0 was release in September 2008,

and has been quickly developed and incrementally updated.

Version 3.0 was released in early 2011 and version 4.0 in

late 2011.

Being open source, the OS has experienced significant

branching in order to support many distinct platforms [1].

Figure 1 shows the branching of the Android operating

system as of January 3, 2011. As the OS has evolved, to

incorporate new platforms, certain API functions have

become obsolete. Developers must realize which functions

are not supported by older platforms and must tailor their

applications accordingly. This gives the developers two

choices; first, developers can choose to disregard certain

versions of the OS. The second option is to re-write their

code for each major release of the OS. Each application

must be designed to run on all the various OS versions and

be able to gracefully handle different hardware profiles,

including screen size, screen density, memory size and

processor speeds.

 9

 Android OS Branching (From [1]) Figure 1.

1. Architecture

Android Architecture is based on the Linux 2.6 Kernel

(Red Section of Figure 2). It is used as the hardware

abstraction layer. The Linux Kernel provides a driver

model, memory management, process management and other

robust features that have been proven over time [2], [3].

The Android libraries (Green Section of Figure 2),

written in C and C++, provide much of the core

functionality and power of the Android platform. For

example, SQLite is used as the core for the majority of the

data storage needs. Webkit is an open-source browser engine

and is the same engine that powers Apple’s Safari.

The main component of the Android Runtime (Yellow

Section of Figure 2) is the Dalvik virtual machine. The

Android platform was designed to meet the needs of an

embedded environment, where battery, memory and CPU

 10

limitations exist. The Dalvik VM converts .jar and .class

files into .dex files at run-time for a much more efficient

byte-code. Additionally, .dex files are CPU optimized and

designed to be shared across processes, resulting in the

ability for multiple, concurrent Dalvik machines to be

running on a single device. The Core Libraries (Blue Area

of Figure 2) provide all the utilities that basic

programmers require, such as File I/O, UI and basic

functionality.

 Android Architecture (From [2]) Figure 2.

The Application Framework (Lower Blue Section of

Figure 2) is the toolkit that all applications, Google or

third-party developers, use. An example would be the

activity manager. This application manages the application

life cycle and a common back stack, enabling applications

running in separate processes to have a smoothly integrated

navigation experience. Content Providers are a unique piece

of the Android Platform; they allow application to share

 11

data. An example of this is the sharing of contacts to any

application with correct permissions.

The Application Layer (Top Section of Figure 2) is the

actual implementation of the applications, such as the

phone, messaging or our NPS Portal.

2. Language

Android applications are written using a subset of the

Java 6 SE API, replacing Swing, AWT and Applet classes with

custom graphics and mobile development libraries. Google

chose not to use Java VMs, and instead developed Dalvik,

which allows each application to run in its own VM on the

device.

3. Development

Android can be developed on any platform (Windows,

Mac, Linux) using any IDE that supports Java. The Eclipse

IDE, however, has been optimized to support Android

development. The optional Android SDK plugin can be added

to the IDE providing increased functionality including

support for a variety of Android Virtual Devices (Virtual

Machines simulating different types of devices), What You

See is What You Get (WYSIWYG) GUI editor, and the ability

to easily sign releasable .apk packages from inside the

IDE.

C. IPHONE PLATFORM

iOS, formerly known as iPhone OS, was originally

released in June of 2007. iOS is based on Apple’s

successful desktop OS, Mac OS X. OS X was cut down and

modified to fit and run on devices with limited resources

 12

such as mobile phones. As the iPhone gained popularity,

Apple began to release the OS on other mobile devices, such

as the iPod Touch, Apple TV and iPad. With multiple device

types running the iPhone OS, the OS was renamed “iOS.”

Apple is continually developing iOS to create a faster

and smoother OS; the current version being 5.0.1. This

version incorporates over 200 improvements, most related to

the user experience. However, two major changes, unrelated

to the everyday user experience, are the PC Free and the

Delta update features.

iPods and all previous releases of the iPhone have

always required the user to connect the device to his or

her iTunes library, allowing the user to update software

and manage content on each device. However, in iOS5, the PC

Free feature removes this constraint. Users will now be

able to set up and update the device without the use of a

computer.

The Delta update feature allows the device to download

application updates faster by requiring only the

application changes to be downloaded. In previous

additions, in order to update applications the full

application needed to be downloaded and installed; this

also applied to OS updates. With the upcoming OS the device

will be able to download only the changes of the

application or OS and install those on top of the

previously installed application. This will reduce the

amount of downloaded data per update. The decrease in the

size of required downloads also paved the way for the new

Over the Air (OTA) updates.

 13

1. Architecture

iOS architecture is similar to that of the Mac OS X;

at the highest level it acts as an intermediary between the

hardware and on-screen applications. Applications do not

directly communicate with the device hardware. Instead the

applications communicate through a set of pre-defined

system interfaces, allowing developer applications to work

seamlessly on different hardware configurations. Although

each application is protected against the different

hardware configurations, developers still need to account

for the configurations in their code. For example, a

developer creating a photography application must account

for the lack of a camera in the 1st generation iPod touch.

This application will be able to use all the functionality

of the app, except for taking pictures.

Within the iPhone OS (Blue Section of Figure 3), there

are four major layers: Cocoa Touch, Media, Core Services

and Core OS. The Core OS is built on the system level

encompassing the kernel environment, drivers and low-level

UNIX interfaces of the OS. The kernel, based on Mach,

manages virtual memory, threads, file system, networking,

and inter-process communications. Also, composing the Core

OS layer is the Security Framework, External Accessory

Framework and Accelerate Framework. These frameworks

provide the necessary security, access to external

hardware, math functionality (basic math, big-number, and

DSP calculations), and are optimized for iOS device

hardware configurations.

 14

 iPhone Architecture Figure 3.

The Core Services layer contains all fundamental

system services; many parts of the system are built on top

of this layer. This layer also includes support for SQLite

databases, xml, grand central dispatch, and in-app

purchases. Core service frameworks, such as the Address

Book Framework, CF Network Framework (which manages Wi-Fi,

cell, and Bluetooth networking), and Core Data Framework

(model view controller data management) are contained in

this layer.

The Media layer contains support for all audio, video

and graphics technologies. This layer supports 2D and 3D

graphics through the Quartz graphics engine. Various

codecs, capable of decoding audio, video and AirPlay

support, are also included in the media Layer.

Finally, the Cocoa Touch layer contains the key

frameworks for building iOS applications. This layer

defines basic application infrastructure and supports key

technologies, such as touch-based input, multi-tasking and

other high-level system services. This layer contains the

implementation of the Apple view controllers. Developers

will use support and services from this layer to create

 15

application UIs. Since this layer provides all

functionality required by the typical developer, we will

initially focus on this layer to begin identifying common

programming aspects of iOS and Android.

2. Language

iOS is based on Mac OSX and utilizes the Cocoa

Programming Environment. Cocoa automates many of the UI

elements of an application so that applications developed

in the environment conform to Apple’s human interface

guidelines. The Objecive-C programming language is the

basis for all iOS application development. Xcode offers

developers all the editing and testing capabilities, as

well as SDK documentation, in one quick and simple

interface.

3. Development

Apple, in keeping with its proprietary nature, has

limited iOS development to only Mac-based computers. The

only authorized development IDE is Xcode. Currently, Xcode

4.2.1 is available for individuals registered as iOS

developers who wish to develop in Cocoa, C++ and Objective-

C. However, if a person enrolls in a developer program

through Apple, Xcode 4.3 is available for download. The iOS

Simulator is an expansive tool, which runs quickly and has

nearly all functionality available by iOS devices. Apple’s

Xcode, with the iOS API and SDK, provides a simple GUI for

developing applications.

Apple has taken many precautions to ensure that its

devices are running only approved applications from the App

Store. Apple offers different developer programs to

 16

accommodate organizations and individual developers. If a

large organization wants to develop in-house applications

it must register for the iOS Developer Enterprise Program.

The Enterprise program will offer the ability to release

the in-house applications without going through the Apple

iTunes Store approval process. The organization’s

developers must also complete the individual developer

process discussed below.

For an individual developer to install applications on

a test device, developer profile must be created and

registered. Also, the device must be registered with Apple.

Once this is complete, the developer must then install the

provisioning profile on the device. The device and

provisioning profile then have to be added to Xcode

preferences. Once this process is complete the device will

work seamlessly with Xcode.

D. DESIGN PATTERNS

In 1977, an architect named Christopher Alexander

described a new concept in architecture in which he

identified reoccurring problems and proposed solutions to

those problems. He thought of these problem–solution pairs

as a new form of architectural language that would allow

even non-architects to begin designing their own houses,

streets, and communities. He called this new language a

“pattern language”; it uses words, drawings, photographs,

and charts to describe patterns that can be used for

designing anything from the placement of a doorknob to the

construction of a skyscraper. Christopher Alexander says:

Each pattern describes a problem which occurs
over and over again in our environment, and then

 17

describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice. [4]

“The Gang of Four” applied the concept of patterns to

object-oriented design in their book Design Patterns:

Elements of Reusable Object-Oriented Software, where they

defined the concept simply as “a general reusable solution

to a commonly occurring problem within a given context”

[4]. Design patterns are not a specific solution to a

specific problem; they provide guidelines on how to solve

general categories of problems. A description of a pattern

should consist of at least the following items: pattern

name, problem, solution, and consequences. The pattern name

should be descriptive of the pattern. The problem should

highlight the issue that the pattern addresses. The

solution should examine a general method of dealing with

the problem without going too deeply into detail. The

consequences should identify costs and benefits associated

with implementing the pattern.

A different architecture, different programming

languages, and different design methods support each mobile

platform. While work is being done to develop a common

language and methods to compile code developed for one

platform to be used on other platforms, it is imperfect and

can lead to loss of platform specific capabilities and

departure from platform specified user interface norms.

Patterns allow developers to conceptualize their

designs at a higher level, focusing on non-platform

specific implementations. They are able to identify which

portions of their code can be easily ported between

 18

platforms, and which portions need to be tailored to suite

specific platforms. Additionally, patterns will allow

developers to decouple those portions that have been

identified as platform specific from those that can be

reused between platforms, increasing code reuse and

allowing developers to take advantage of platform specific

features; all while minimizing modification to the design

of their core application designs.

1. Model-View-Controller Design Pattern

The Model-View-Controller (MVC) pattern (Figure 4) is

actually a compound pattern composed of several separate

patterns, each addressing a unique problem. Variations of

this pattern have been used to build user interfaces since

Smalltalk [5]. It consists of three classes: a Model, which

represents application logic; the View, which is the screen

representation of the Model; and the Controller; which pre-

defines how the View will react to user input [4].

 MVC Pattern (From [4]) Figure 4.

The View uses the Composite pattern that allows

individual View objects, such as buttons and text boxes, to

 19

be grouped into tree structures, which can in turn be

treated as a single View in the same way that any

individual View would be addressed. If you call the draw()

method on the composite structure, it will in turn call the

draw() method on all of its children, regardless of whether

they are leaf elements or nested composite Views. This

allows client code to treat composite elements the same way

they would treat primitive objects, they need to know very

little about the View elements with which they are

interacting.

The Controller implements a Strategy pattern in which

a family of algorithms is defined, encapsulated, and made

interchangeable. The Controller contains the logic for how

the View reacts to user actions. Take for example, a media

player with a single button on the screen. In the “stop”

state the button would be expected to start the .mp3

(Model), and that is what the Controller does when it

responds to the button click. Once the .mp3 is started,

there is no reason for it to start the media player again,

so the controller can be replaced with one that has an

identical interface but instead of causing the model to

start, it causes it to stop, at which point the original

controller can be utilized again. The Strategy pattern

allows algorithms to vary independently of clients that use

them; it allows views and controllers to be decoupled and

modified independently.

The Model is an example of the Observer pattern, which

is a one-to-many relationship between objects in which many

objects can subscribe to a single Model in order to be

notified when it changes states. Instead of constantly

 20

polling Models to ensure that they have the most recent

representation, Controllers can subscribe and be notified

by the Model whenever it changes state. The “Gang-of-Four”

envisioned a MVC pattern in which the View also subscribed

to the Model and was updated independently of any

associated Controllers, as presented in Figure 4.

Implementing the Observer pattern frees system resources,

sending messages between objects only when model data has

been changed. If over-used, there are cases where Models

may update their subscribers when unrelated data has

changed.

2. MVC and Mobile Applications

iOS relies heavily on the concept of MVC. It has re-

envisioned the pattern in such a way that the Model and

Views are unaware of each other. Android does not enforce

the use of this pattern, but we have developed a design

process that will allow us to view Android applications in

the light of the MVC pattern.

E. CONCLUSION

At first glance, it seems as if the iOS and Android

platforms are significantly different. They do not share a

common language nor do they share a common architecture. It

is difficult to envision a process in which developers may

utilize one set of application design documents during

development. Chapter III will discuss the basic UI building

blocks of mobile applications as well as generic navigation

concepts. This will identify several common concepts useful

to the development of a Unified Design Process. Chapters IV

and V will show how a common MVC pattern may be applied to

 21

iOS and Android platforms. Chapter VI will utilize these

concepts and techniques to describe a process that will

allow developers to design an application for any mobile

application. This Unified Design Process was tested during

the development of an NPS Muster application.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. NAVIGATION AND USER INTERFACE COMPONENTS

On the surface, the Android Operating System and iOS

user experiences are markedly different. Each provides a

distinct user experience that is expected to carry through

to third-party applications in order to maintain a

consistent user experience. The underlying structures on

which the individual UIs are built are remarkably similar.

By understanding the similarities of these basic UI and

navigation components, we are able to apply a level of

abstraction that allows developers to build applications,

targeted for multiple platforms, from a common design

document. This chapter will identify the common concepts of

navigation and User Interface (UI) building blocks shared

by both operating systems.

A. UI BUILDING BLOCKS

Mobile applications are, by nature, UI intensive. Each

platform has a distinct style that users expect developers

to incorporate into their designs. When users buy a

specific phone they also buy into the platform UI style. If

applications differ from the platform specific UI style

users can become confused or frustrated. Thus, it is good

practice for developers to design their application UIs

targeted for each platform.

Each platform has a distinctive style that developers

should follow in their applications; the core elements used

to design the UI for any platform are similar. If one

understands the similarities and differences of the basic

UI building blocks, they should have no trouble creating

 24

multiple UIs that fit with the targeted platforms, but

maintain similar functionality.

1. View

Android and iOS both utilize the concept of a View as

the base of every user interface. Android’s View [6] and

iOS’ UIView [7] classes both define rectangular areas on

the screen. This interface manages the displayed content

and event-handling code necessary to process user

interactions. Figure 5 is a visual representation of a view

hierarchy in Android (left) and iOS (right). Views rely on

the Composite pattern as discussed in Chapter II. Each view

object may contain zero or more subviews each responsible

for positioning and sizing inside of itself. All building

blocks discussed in this section are subclasses of View or

UIView classes.

 Example View Structures Figure 5.

2. Buttons

Buttons provide intuitive connection to the

application functions by enabling a user to interact with

the UI through a simple press action. Buttons are realized

 25

in Android as an instance of the Button class and in iOS as

an instance of the UIButton class. Figure 6 is an example

of the basic button used by Android (left) and iOS (right).

The main difference in implementation between iOS and

Andriod is that an instance of UIButton intercepts touch

events and actively calls a function in a target object,

while Android objects establish a listener that takes

action when they receives a callback event from a Button.

We have found that during design the difference is negated

by identifying the function which would normally be called

by the UIButton in iOS and placing a call to that function

inside the OnClickListener associated with the Button in

Android.

 Android and iOS Buttons Figure 6.

3. Text Fields

Text fields are integral to any application that

either displays static data or receives text input from a

user. Both platforms provide several specialized subclasses

to edit text, but the simplest of these classes are

UITextView in iOS and TextView in Android. Each of these

Views provide added functionality, such as a user being

able to modify text content through the use of an on screen

keyboard, and character masking for when a user is entering

a password.

 26

4. Spinners

Android’s Spinner and iOS’s UIPickerView are Views

that provide an intuitive method for displaying the

currently selected item from a list of similar items, as

well as simple methods for users to choose that selection.

Both classes rely on an Adapter (Android) or Delegate (iOS)

to handle the underlying data and the individual views

associated with each row in the Picker UI. Figure 7 shows

the basic spinner elements for Android (left) and iOS

(right).

 Android and iOS Spinners Figure 7.

5. Lists

Information is commonly organized and displayed in

lists. There are several methods available on both Android

and iOS that allow an application to display these lists in

meaningful ways to the user. Lists (Figure 8) can be used

for data selection and drill-down (Stacked) navigation.

 27

 Android and iOS Lists Figure 8.

a. Selectable List View

Android utilizes the ListView class and iOS uses

the UITableView class to provide basic functionality for

displaying multiple line items in vertical arrangements.

Both classes require a data source and an Adapter (Android)

or Delegate (iOS) to format the individual item views

presented in the list. Both platforms provide the ability

to set custom views as list items; these custom views can

be made up of other View elements such as Buttons, Images

and Text Views.

iOS provides detailed guidelines regarding

implementing list-items. The UITableViewController class

is used to manage a UITableView and its associated

data source, which is typically a NSMutableArray. The

UITableViewController method tableView:cellForRowAtIndexPath

will define the allocation and setup of individual table

rows. The tableView:didSelectRowAtIndexPath method will

define functionality associated with row selection.

 28

Android provides differentiation of short click

for selecting an item and long press for accessing other

options for an item such as editing or deleting from the

list view.

b. Multi-Select List View

Both platforms provide list views that

incorporate check boxes, expanding the functionality of

Selectable List Views in order to allow users to choose

several options from a list at one time.

6. Switches

Switches, shown in Figure 9, are a subclass of button

on both platforms. They may exist in one of two states, on

or off, returning Boolean values. iOS uses the UISwitch

class where Android uses the Switch class.

 Android and iOS Switches Figure 9.

7. Dialogs

Dialogs are small Views that appear in front of

Current Views to display an alert message to the user, such

as the System Update message in Figure 10. iOS implements

the UIAlertView class and Android uses the Dialog class.

Both classes are able to modify the title, message and

Buttons presented on the dialog. The Dialogs can also be

customized to show information other than messages.

 29

 Android and iOS Dialogs Figure 10.

8. Radio Buttons

Radio buttons are two state buttons that can either be

checked or unchecked. Radio buttons in an unchecked state

may be clicked and become checked, but further clicks do

not uncheck the radio button. Radio buttons are often

grouped together to extend functionality. Clicking one

Radio button in a group automatically deselects other

grouped Radio Buttons. Android implements the RadioButton

class while iOS implements the UISegmentedControl class.

While a Segmented Control does not resemble a standard

Radio Button, the underlying functionality is roughly the

same. Figure 11 shows the Android Radio Buttons on the left

and the iOS Segmented Controller on the right.

 Android and iOS Radio Button Figure 11.

 30

9. Progress, Sliders, and Loading Activity

Progress Views (Figure 12) show the progress of an

operation. There are also activity indicators available for

both platforms that indicate to users that a task or

process is progressing without actually indicating

percentage complete. Android implements Progress Bars

through the ProgressBar class and iOS uses the

UIProgressView class.

 Android and iOS Progress Bars Figure 12.

Slider Bars allow a user to select a single value from

a continuous range of values. In Android the Slider Bar is

implemented using a SeekBar, which is an extension of a

ProgressBar (Top Bar of Figure 13). In iOS it is

implemented using a UISlider (Bottom Bar of Figure 13).

 Android and iOS Slider Bars Figure 13.

Loading Activities are animations that are displayed

in both Android and iOS to show that the device is

processing user input. Often times the Loading Activity is

used when sending or receiving information from a server.

Figure 14 shows the Android and iOS Loading Activity.

 31

 Android and iOS Activity Figure 14.

B. NAVIGATION

Mobile devices are typically much smaller than their

desktop counterparts and thus have significantly less

screen real estate. Where typical computer programs may be

able to show all information on a single large screen,

mobile applications are presented to users in a modular

fashion. The visual aspects of these modules are called

views, while the underlying code components for Android and

iOS are called Activity and View-Controller, respectively.

For the purpose of this paper, the combined code and view

components will be referred to as “screens” and the

underlying code will be referred to as “controllers.”

Most applications will utilize multiple screens and

the concept of switching between those screens is

considered navigation. Application navigation can fall into

one of several groups: Null, Stack, Horizontal navigation,

and a hybrid that combines aspects of these three

fundamental techniques.

1. Null Navigation

In both Android and iOS, it is possible to have

multiple views associated with one controller. The

controller is responsible for switching the different views

to the forefront, presenting underlying data, and event

handling for each view. The details of the presentation and

 32

event handling interaction between the controllers and

views will be discussed later in this chapter.

Another integral part of application design is the

presentation of screens and the interaction between screens

and controllers. These topics will be covered in Chapters

IV and V. In Null Navigation (Figure 15), the one

controller is associated with multiple views and will

explicitly determine which one to display. In any non-

trivial application this method becomes unwieldy. A single

controller will contain all code necessary for presenting

and switching all views associated with that application.

This leads to significant problems with readability and

does not lend itself to good object-oriented practices.

 Null Navigation Figure 15.

Generally, Android and iOS both recommend modularizing

application code in such a way that each view is paired

with one code module [8], [9]. In more advanced

applications, it is possible to combine these modules to

 33

create more intricate designs. For the purpose of this

thesis, we will use a one-to-one relationship between code

modules and view hierarchies.

2. Stack Navigation

One of the more modular approaches to navigation is

the concept of “stacking” screens. In this method, an

application would act as a controller implementing

navigation by pushing screens on to a stack as a user

navigates deeper into the application. This creates a

hierarchical design that allows for reverse navigation, by

popping the topmost screen from the stack.

Stack Navigation (Figure 16) is considered good

practice because it logically separates screens into

functional entities. (TASKS in Android) Applications

consist of one or more such loosely related screens,

consisting of one controller and its associated view. The

application is responsible for communication between

individual controllers.

 Stack Navigation Figure 16.

 34

3. Horizontal Navigation

Horizontal Navigation (Figure 17) is realized through

the use of tab bars. Each screen is displayed at the same

level as the other screens without reference to display

order. Different screens can be displayed at any time based

on tab selection. Unlike stack navigation, there is no

ability to backtrack, each screen can be thought of as

active, constantly displaying its information and shown as

necessary.

 Horizontal Navigation Figure 17.

4. Composite Navigation

Composite Navigation (Figure 18) combines Horizontal

and Stack Navigation by either stacking on top of tabs or

by nesting a Horizontal Interface on top of a Stack. By

combining the two types of Navigation, developers are able

to create naturally flowing apps where users are capable of

navigating into multiple view hierarchies.

 35

 Composite Navigation Figure 18.

Typically, Composite Navigation has a Horizontal

Navigation pattern at the root with Stack Navigation

embedded into each node. A developer is able to place

Horizontal Navigation within the stack, creating a

branching effect, but this can lead to user confusion,

especially when Tab Bars are placed at different levels of

a stack. The adverse impact of user confusion may be offset

by the value of the added functionality acquired from

combining horizontal and stacked navigation. The apps we

developed are typically built using Composite Navigation.

C. CONCLUSION

Android and iOS platforms provide specialized UI

experiences with which users have become accustomed. These

experiences are expected to be used by third-party

applications, which prevents developers from reusing View

designs between platforms. Applying a layer of abstraction

to the design process can largely marginalize these

differences. Understanding there are few differences

between the basic UI building blocks and Navigation

 36

principles between the two platforms allows application

design to be broken into similar functioning classes.

Identifying these similarities at an abstract level

will allow us to apply patterns when designing new

applications for cross-platform deployment. The patterns we

suggest will highlight these similarities, allowing the

consolidation of application logic into specific classes

that can be reproduced on either platform. These patterns

will also highlight areas that may vary between the

platforms. By understanding where variability occurs,

developers will be able to minimize inconsistencies between

the implementations of their applications.

Chapters IV and V will discuss the application of a

common design pattern, the Model, View, Controller, in iOS

and Android applications. These chapters will also

demonstrate how that pattern can be used to design a single

screen on either application. Finally, the concept of

application lifecycles for the targeted platforms will be

discussed.

 37

IV. IOS DEVELOPMENT

This section details the iOS development process and

the implementation of the Model View Controller (MVC)

Design Pattern in iOS applications. By default Xcode,

Apple’s IDE, integrates the MVC pattern into every project.

Developers are required to have an understanding of the

components of the MVC in order to create applications. The

following sections will break down each part of the MVC and

introduce how iOS handles the application and

ViewController lifecycles.

A. INTEGRATED DEVELOPMENT ENVIRONMENT

The most recent version of Xcode binds the code

development and Interface Builder (IB) processes more

closely than prior versions. The code development portion

provides the standard editing and documentation

functionality of other professional IDEs. The IB provides a

simple UI for developers to create application UIs by

supporting the “drag-and-drop” of pre-defined UI elements

onto base views. Furthermore, IB allows developers to link

those UI elements to Controller classes through the

integrated File Investigator.

Xcode provides several pre-defined project types

through which one may begin building an application. These

application types are: Master Detail, OpenGL Game, Single

View, Tabbed, Page-Based, Utility, and Empty. For the

purpose of this thesis, all projects were started as Empty

Applications, the most basic of the options. When this type

of project is created, a developer is only given the

 38

AppDelegate.h and AppDelegate.m files. This option gives

the developer more flexibility when creating the

application UI.

iOS uses Objective-C; as with other C languages,

classes are defined using implementation files, denoted by

the .m extension, and header files, denoted by the .h

extension. iOS begins all projects with an AppDelegate

that controls the overall application lifecycle, discussed

later in the chapter.

Screens are created by subclassing the

UIViewController class and creating a NeXT Interface

Builder (nib) file. Xcode will handle this process

providing a minimal subclass and blank Views in associated

nib files.

B. NAVIGATION

Navigation Controllers in iOS align well with the

general navigation concepts discussed in Chapter III. The

AppDelegate instantiates the base window, which will

contain all subviews, and the root navigation controller.

The root navigation controller provides the functionality

of screen switching within the application. The following

sections highlight how iOS implements each of the general

navigation concepts as a root navigation controller.

1. Stack Navigation

In iOS, Stack Navigation is realized by implementing a

UINavigationController. A UINavigationController will

provide basic navigation UI elements such as a Navigation

Bar (see Figure 19). The Navigation Bar provides references

to label the current screen as well as additional

 39

navigation options such as a “back” button to pop the

current screen from the stack.

 iOS Stack Navigation Screenshots Figure 19.

2. Horizontal Navigation

iOS implements Horizontal Navigation through the use

of a UITabBarController. Developer documentation states

that:

The view hierarchy of a tab bar controller is
self contained. It is composed of views that the
tab bar controller manages directly and views
that are managed by content view controllers you
provide. [10]

This means that a UITabBarController manages not only

a view, but also several Content Controllers, each of which

may be a UINavigationController that could manage its own

stack of UIViewControllers. The tab bar controller provides

 40

a view element, which consists of two or more tabs on the

bottom of the screen and a blank view area where Content

controllers can display custom views. The tab bar

controller is responsible for managing the navigation

between its child controllers, ensuring that the correct

Content controller is presented when the user chooses the

associated tab.

3. Composite Navigation

The most common form of Composite Navigation in iOS is

realized by embedding UINavigationControllers within a

UITabBarController. Figure 20 shows the transition into a

deeper level of the hierarchy within a tab bar.

 iOS Composite Navigation Screenshot Figure 20.

 41

It is possible to embed a UITabBarController within a

UINavigationController, but is not recommended by Apple.

The Apple Developer Library states:

A navigation controller can incorporate custom
view controllers, and a tab bar controller can
incorporate both navigation controllers and
custom view controllers. However, a navigation
controller should not incorporate a tab bar
controller as part of its navigation interface.
The resulting interface would be confusing to
users because the tab bar would not be
consistently visible. [11]

Generally, we agree with this statement; however, we

have found that it may be necessary to employ such a design

in an application. If done properly, and not overused, tab

bars may be nested inside a Navigation Controller without

creating user confusion.

C. MODEL-VIEW-CONTROLLER DESIGN PATTERN

Apple developer documentation describes a re-

envisioned MVC pattern. The benefits of adopting this

pattern are re-usability, better-defined interfaces, and

simpler extensibility [12]. iOS decouples the View from

the Model, as shown in Figure 21, by using the Controller

to handle user actions received by the View and to update

the View as the Model changes. The View does not need to

know the Model exists and vice-versa. The View and Model

can be modified or replaced independently affecting only

the Controller. In iOS, a Model can be any Object that

represents or holds data of some variety, the Controller is

a ViewController, and the View is a Composite View defined

by an .xib file. A View can be linked to the Controller

 42

through the definition of IBOutlets in the header file and

connected in the IB through the File Inspector.

 iOS Model, View, Controller Pattern (From [12]) Figure 21.

In order to discuss the application of the MVC

pattern, we present a simple application that simulates a

beating heart. The Beating Heart app exemplifies the many-

to-one relationships between models and Controllers, and

the one-to-one relationship between Controllers and Views.

The code for this application can be found in Appendix A.

There is one Heart Object, two Controllers, and two Views.

The App has two screens displayed inside of a tab bar

(Figure 22). One screen displays an image of a beating

heart while the other provides settings to change the

frequency at which the heart beats.

 43

 Heat Beat iOS Screen Shots Figure 22.

1. Model

“Model objects encapsulate the data specific to an

application and define the logic and computation that

manipulate and process that data” [12]. In our Beating

Heart application, we created a class named Heart that

contains all data and logic of a beating heart. This class

contains no links to the UI and provides no functionality

for communicating directly with a user.

The Heart class contains two integer data elements

heartRate and beatCount, which determine the heart beat

frequency and maintain a running count of the number of

times the heart “beat.” Along with the integer elements,

it contains the corresponding getter and setter methods

that are publicly accessible. This model also contains the

logic required for it to simulate a beating heart. A

 44

function called “beat” will increment beatCount and then

set a timer for itself according to the heartRate value.

After the timer has completed it will then call the “beat”

function again.

In this project, the views implement an observer

pattern. The details of the interaction between the views

and the model are explained in the following section.

2. View

As stated earlier, Views follow the composite design

pattern, implementing a hierarchy of Views and Sub-Views.

Each application contains one root view in the hierarchy,

called the window. The window serves to “manage and

coordinate the [views] an application displays” [13].

A view is typically an instance of a subclass of

UIView. It can be instantiated programmatically or through

the use of nib files created in Interface Builder (IB). For

most applications, the IB provides all necessary functions

for building aesthetically appealing, intuitive, and

functional UIs. It provides simple and intuitive drag-and-

drop functionality for creating View object hierarchies and

linking the View objects to View Controller methods. For

more dynamic UI development iOS provides features for

creating View Objects programmatically along with the

ability to place them inside view hierarchies at run time.

Our Heart Beat application utilizes two View

hierarchies, one that displays a UIImageView of a beating

heart, and one that contains two UILabel objects and two

UIButton objects. One UILabel is simple text that remains

static while the other displays the Beats Per Minute at

 45

which the Heart Object is currently set. The UIButtons send

events to corresponding IBOutlets based on user

interaction. The link between the IBOutlets in the code and

the UIButtons on the screen are created through a drag-and-

drop system in the IB. When the user clicks the window in

the area of the button, the button will intercept the touch

event and send the event to the associated method in its

controller. The controller will then update the model to

reflect the user input by either incrementing or

decrementing the heart rate variable. After updating the

model, the controller will then update the UILabel that

displays the current heart rate.

View objects are ignorant as to the existence of any

model objects and vice versa. The View’s only

responsibility is to pass user touch events to its

associated Controller and to display information as

requested by that Controller.

3. Controller

Controllers tie the MVC pattern together,

communicating between Model and View objects. Touch events

processed by View objects, such as UIButtons, are

associated to specific methods in the Controllers. When a

user presses a button the corresponding method in the

Controller is called and the Controller reacts accordingly.

Controllers may be associated to one or more Model

objects. Depending on the situation, the association may be

loose, wherein the Controller will poll the Model when it

needs to access the underlying data or logic, or the

association may be tight, implementing another Observer

 46

pattern. By registering as an Observer, the controller will

be notified of any relevant changes.

We have implemented two Controllers in the Beating

Heart application. Both controllers have a reference to a

single instance of a Heart model. The first controller is

the HeartView class. This class registers itself as an

observer of the beatCount variable using the function

registerAsObserver. Whenever the beatCount changes the

observeValueForKeyPath function is called and the image of

the heart is briefly changed to a larger version, animating

a heart beat.

The second controller is the HeartSettings class. This

controller contains the functionality for updating the

heart rate of the model. It has two functions that

increment or decrement the heartRate variable within the

model. These functions are linked to the view buttons,

mentioned above, through the IB. We also implemented the

Observer pattern in this class. Every time the Model’s

heartRate variable is modified the observeValueForKeyPath

method is called and the Controller updates the UILabel

with the current heart rate.

The Beating Heart application exemplifies the use of

the Model, View, Controller pattern as well as the

Composite Pattern and the Observer Pattern. We showed how

one Model may be accessed by multiple Controllers and that

each View has a single associated Controller. In the next

section, we will discuss the concept of application

lifecycle as it pertains to an iOS application and

individual controllers.

 47

D. LIFECYCLES

Every iOS application has a designated starting point;

it will run continuously until ended, either by the user or

by the OS. Once it has begun execution, the application

must account for the many activities that can happen on a

mobile device. A majority of the applications will run to

completion, but there may be events that interrupt that

process, such as phone calls or text messages. In order to

account for these situations, iOS has built-in methods

that, when properly coded, will create smooth application

transitions.

Within the application, each UIViewController has its

own lifecycle. The switching of screens triggers different

method calls. If improperly handled, these events can cause

application faults. In the next sections, Application

(Figures 23 and 24) and ViewController lifecycles will be

explained.

 48

 Application Lifecycle (From [14]) Figure 23.

 49

 Application Launch into Background (From [14]) Figure 24.

 50

1. Application Lifecycle

Each iOS application has one instance of

UIApplication. This is an example of the Singleton pattern

in which this instance may be accessed subsequently from

different controller objects by invoking the

sharedApplication class method. “The UIApplication class

provides a centralized point of control and coordination

for applications running on iOS” [15]. A developer may

access the UIApplication code in the main.m file that comes

pre-configured with every new project. The application

object is assigned a UIApplicationDelegate that is informed

of significant run-time events. The application can be in

one of five states: Not Running, Inactive, Active,

Background, Suspended. Apple documentation defines these

states as [14]:

 Not Running—The application has not been launched
or has been terminated by the OS.

 Inactive—The application is running in the
foreground but is not receiving events.

 Active—The application is running in the
foreground and receiving events

 Background—The application is executing code in
the background

 Suspended—An application is in the background not
executing any code

iOS provides the developer methods which allow

customized functionality for transitions between states.

Figures 25 and 26 show the decision flow diagrams for

loading a view to and from memory, respectively.

 51

 Loading a View into Memory (From [16]) Figure 25.

 52

 Unloading a View from Memory (From [16]) Figure 26.

 53

2. ViewController Lifecycle

ViewControllers come in many styles, but each has the

responsibility of controlling the information flow, to and

from the Views and Models, maintaining screen logic, and

handling lifecycle events. These lifcycle events can be

classified as: Creation, Viewing, Action Handling, Hiding,

and Deallocation.

In iOS each controller has default methods to handle

these events, but as an application is developed the

functions can be customized to create a more dynamic

experience. The most changed lifecycle functions are: init,

viewDidLoad, and viewDidUnload.

E. CONCLUSION

Patterns, in general, and MVC in specific, provide a

more abstract approach with which to design applications

targeting multiple platforms. By using patterns in early

stages of design, developers can more easily approach

specific design issues on multiple platforms with less

redundant effort. In our Heart Beat Application, we were

able to recognize that the Heart class could act as a model

and was easily implemented on both platforms. The Views

were also easily implemented on both platforms, providing

guidelines to follow, but allowing us the flexibility to

tailor the UI to the norms of each platform. The Controller

can implement similar functionality between platforms,

tying the Model to the View, but it is a perfect place to

add platform specific functionality and account for

platform differences.

 54

In order to see how these patterns apply to our design

algorithm and mobile programming in general, a basic

understanding of generic navigation and user interface

objects from Chapter III is essential.

 55

V. ANDROID DEVELOPMENT

This section details the Android development process

and the implementation of the Model View Controller (MVC)

Design Pattern in Android applications. The Android

Operating System does not rely on the MVC Pattern, but the

pattern can be realized in any application. Developers who

have an understanding of the MVC pattern can apply it to

applications they design. The following sections will

highlight how the MVC Pattern may be applied to Android

applications and how Android OS handles application and

activity lifecycles.

A. INTEGRATED DEVELOPMENT ENVIRONMENT

Android applications can be developed using any IDE

that supports the java language, however, Google recommends

and supports the Eclipse IDE. Google has developed the

Android Software Development Kit (SDK) and Android

Development Tools (ADT) that integrate into Eclipse

providing a more seamless Android development experience.

The Android SDK and ADT provide the necessary tools, APIs,

and plug-ins to design, create, and test applications. The

Eclipse IDE was used to develop all projects related to

this thesis.

When starting an Android project you are provided

limited setup options, such as: package naming and target

platform (API Level). By choosing a lower API Level

developers can ensure the maximum compatibility with

multiple platforms. However, applications that target lower

APIs have decreased support for newer functionality

inherent in later APIs and platforms. Choosing a higher API

 56

Level provides access to more advanced functionality, but

results in the exclusion of earlier Android versions.

New Android projects, by default, provide developers a

“main” Activity, which consists of .java and .xml files.

This activity will correlate to a screen, as defined in

Chapter III, and will be the default activity opened when

the application is first opened. Android applications will

typically consist of multiple, loosely coupled activities;

each capable of opening other Activities, both internal and

external to the application, through a method called an

Intent. Intents allow Android applications to have multiple

entry-points as well as the ability to incorporate

functionality included in other application activities.

B. NAVIGATION

Android navigation centers on the concepts of Tasks

and the Back Stack. Android developer documentation defines

a task as “a collection of activities that users interact

with when performing a certain job” [17]. This implies that

developers should identify both an overall task and a

collection of sub-tasks that they expect their users to

accomplish with their app. The sub-tasks should be tied to

individual screens or “Activities.” These activities are

organized in a stack, called the “Back Stack,” in the order

in which they were opened. This aligns very well with the

general navigation concepts discussed in Chapter III. The

following sections provide a description of how Android

implements the navigation concepts described in that

Chapter.

 57

1. Stack Navigation

Android implements stack navigation through the use of

the Back Stack. The home screen, or Main Activity, is

typically the starting place for most tasks. When an

application icon is clicked, either the application’s task

is brought to the foreground, or if it has not been opened

recently, a new task is created and the “main” activity is

opened as the root of the task. When the current Activity

opens another one, the new Activity is placed on the top of

the Back Stack in typical last-on, first-off manner.

The ability to “push” activities onto the Back Stack

is realized through the use of Intents. An Intent object is

a bundle of information pertinent to the receiving

component, as well as information pertinent to the Android

system. Each activity can start a second activity at any

time by creating an intent (Figure 27), which identifies

the activity to be started and any data to be passed to

that activity, and passing it into the startActivity()

method.

 Android Intent Figure 27.

As the second Activity is started the first Activity

is stopped and its state is saved. The Back Stack is never

rearranged, if multiple activities are capable of opening

another activity, multiple instances of that activity will

be placed on the Back Stack.

 58

“Pop” functionality is realized through the use of the

back button that is a mandatory static feature of every

Android device. Recent versions of Android have replaced

the hardware back button with an on screen version with the

same functionality

Figure 28 shows a simple application that implements

stack navigation. Each of the three buttons on the main

screen will open a new Activity and push it onto the Back

Stack. In order to pop the new Activity from the Back

Stack, a user must press the physical back button on the

device.

 Android Stack Navigation Screenshots Figure 28.

 59

2. Horizontal Navigation

Horizontal Navigation is realized by implementing a

subclass of TabActivity. TabActivity is responsible for

switching the displayed content when a user selects

different tabs. TabActivity is a subclass of Activity and

as such must include both a .java and .xml file to display

the view element of the activity. TabActivity contains an

instance of a TabHost, which is a container that holds

multiple child activities and labels of the desired tabs.

It also contains a frame layout that is used to display

contents associated with a specific tab; this is typically

another activity.

The child activities are responsible for all actions

performed inside the frame layout specified by the TabHost.

The TabHost retains responsibility for switching between

children as necessary.

3. Composite Navigation

Due to the capabilities that Intents provide to each

activity, the ability to push any other activity onto the

Back Stack, Composite Navigation is very similar to Stack

Navigation. The Main Activity of an Android application may

be a TabActivity or an Activity. Activities may push

subclasses of Activity, including TabActivity objects, onto

the Back Stack. The child activities of a TabHost may push

other Activity and TabActivity objects onto the Back Stack

when they are active.

The major difference between Android and iOS

implementation of Composite Navigation is that, by default,

Android pushes new Activity objects on top of the

 60

TabActivity vice on top of the child activity. This results

in the tabs being hidden when a user navigates deeper into

a child activity's hierarchy. This functionality is hown in

Figure 29. This provides users with larger screen real

estate and limits their focus on a single branch of their

task. By default, the Back Stack is not designed to branch.

This functionality must be taken into account when

designing cross-platform applications.

 Android Parallel Navigation Screenshots Figure 29.

 61

C. MODEL VIEW CONTROLLER PATTERN

Android documentation does not enforce the MVC pattern

as emphatically as does iOS documentation. Activities are

designed to be self-contained and provide everything a

developer needs to present a single screen to a user and

accept feedback from the user interactions with that

screen. In an effort to standardize design implementation

we sought a method that we can comfortably apply the MVC

pattern to Activities in an intuitive manner that aligns

with current Android design paradigms.

We began our study by decomposing an Activity into its

base components. The View component is described by an

activity’s associated .xml document; the .xml is not, in

and of itself, a View, rather a description of a composite

View that will be loaded by the Controller. Model objects

are even simpler to identify, all application data and

logic should be stored in Model objects. Model objects may

be duplicated almost entirely between platforms, developers

must only be aware of minor language differences. The

Activity object is the logical object to assume the role of

Controller: it holds references to Models and Views, and is

typically expected to provide logic associated with the

Activity.

The following sub-sections will describe how to apply

the Model, View, Controller pattern to an Android Activity.

We will continue to utilize the Heart Beat Application to

describe these concepts.

 62

1. Model

Model objects in Android function almost exactly as

they do in iOS with the exception of minor language

differences. The Android version of our Heart Beat

application implements the same Heart model as its iOS

counterpart. Figure 30 shows the Android implementation of

the Heart model. There are obvious language differences;

Timers in Android utilize milliseconds and Timers in iOS

utilize seconds, this can lead to some minor differences

when actually implementing a class. Overlooking these minor

differences, however, can lead to significant execution

differences.

 Heart Beat Android Screen Shots Figure 30.

 63

Regardless of the minor differences, the overall

structure of the class will remain constant; the same

function will act in a similar manner returning the same

results, regardless of the actual code utilized inside the

functions. It is very easy to store application data and

logic inside these models. Utilizing a common design

document, functions may be easily implemented in either

platform either in parallel, or by writing for one platform

and then migrating the code to the second platform. Either

method allows developers to maintain a common structure

between platforms that will allow for easier maintenance

later in the application life cycle. Figure 31 shows the

design document and corresponding Android .java file.

 Android Heart Model Figure 31.

 64

2. View

As in iOS, Android View elements are organized

following the Composite design pattern. Android developers

may declare an activity’s layout in two ways: declaring UI

elements in XML and instantiating layout elements at

runtime. Android provides an XML vocabulary and simple

WYSIWYG visual builder that developers may use to design

their UI layouts. Additionally, View objects may be created

and manipulated programmatically.

Declaring the UI in XML provides Android with the

ability to support multiple screen sizes. Multiple layout

documents may be created that correspond to multiple screen

sizes. The appropriate layout will automatically be chosen

when the activity is started.

Unlike iOS, each Activity is assigned its own root

view element, typically a LinearLayout that is used to

arrange child View objects in a single column or row. In

addition to being ignorant of Model objects, Android View

objects are also completely ignorant of the existence of

their corresponding controllers. Android View objects do

not call functions in their controllers when the user

interacts with them. It is the responsibility of the

Controller objects to listen and respond to UI events.

3. Controller

The Activity object is the core of each screen in an

Android application. References to both Model objects and

View objects are instantiated, maintained, and manipulated

by the Activity objects. The Activity is the logical object

to assume the role as Controller.

 65

Android Controller objects will instantiate View

objects by either loading an XML layout file or dynamically

creating new objects and placing them into an existing

ViewGroup. In the former process, the view objects, such as

a Button, are assigned an ID attribute in the XML document

and are referenced by the Controller based on that ID. The

Controller will then instantiate an appropriate object and

connect it to the item in the XML document using the

assigned name attribute. In order to maintain code

readability and have a logical break down of code, we

created a setConnections method that links all the UI

Elements in each controller.

The latter method provides developers the capability

to manipulate the UI at runtime, adding additional widgets

or removing them as required by the application. For the

purposes of this thesis, we will rely on static UIs and

will not employ the latter method.

Android Activities are not designed to function

specifically as Controllers. In an effort to ensure similar

code concepts between the platforms, we decided to enforce

the Controller role on the Android Activity object,

mirroring the functionality of the iOS ViewController. In

order to facilitate this concept, we created a code

structure to be used with Activity objects that attempts to

align the core functionality of the two objects. We have

created several functions that, when used to format an

Android Activity will help maintain consistency when

applying our overall design.

The Beating Heart application for Android shares a

common design with the iOS Version. The screens are similar

 66

in appearance and functionality, with the exception of

certain platform specific UI elements, such as tab

position. The underlying code and concepts operate

similarly, and the Activity objects share similar methods

with the iOS ViewController objects.

The getExtras() method (Figure 32) is used to receive

information passed between screens. In the Beating Heart

application, the heart model is instantiated in the TabBar

Activity and a reference is passed to both child activities

through an Intent. The child activities both receive the

Intent and register as observers of the heart model.

 Android Get Extra Function Figure 32.

We utilize the setConnections() method (Figure 33) to

connect view objects to controller reference variables.

This is similar to the declaration of IBOutlets in the iOS

Header files and the drag-and-drop connection of those

outlets to objects in the Interface Builder. After the XML

layout document is loaded, the setConnections() method will

connect the view object references in the XML layout

document to local variables in the Controller object.

 Android setConnections Method Figure 33.

 67

The setOnClickListeners() method (Figure 34) is used

to perform a role similar to connecting IBActions to

individual View objects in the iOS Interface Builder. After

connecting the Controller to necessary View objects, the

setOnClickListener() method will fill the role of selecting

target actions. Unlike iOS, Android Widgets are not

associated with target actions; they are ignorant as to the

existence of their associated Controllers. Android View

objects simply provide a callback method by which other

objects may be alerted to status changes; in the case of

the Heart Beat application, the Activity acting as a

Controller listens for the callback method of the

associated View object. In order to simplify the relation

between Activities and iOS ViewControllers, we implement

the same methods in both classes. Where in iOS the plus

Button would be associated with the target action

increase(), the Android Button is only aware of a click

occurring, the Activity that has implemented an

onClickListener for that button associates the click event

with the increase() method.

 Android setOnClickListeners Method Figure 34.

 68

Implementing the Activity object in this manner allows

it to assume the role of the Controller. The Activity will

instantiate and manipulate Model objects, control the

presentation of View elements and listen for user events

through onClickListener() or equivalent methods. This

method provides distinct separation of Model and View

roles; these objects are never aware of one another.

When the MVC is utilized in this manner in Android,

one may begin to see the similarity between the Android

Activity / XML layout and iOS ViewController / nib file

combination. The majority of application logic can be

pushed into Model objects, which, other than specific

language implementations, will remain largely unchanged

between platforms. View objects may be arranged and

formatted according to platforms’ specific requirements.

Controllers may be written in such a way to compensate for

minor differences in the UI implementations.

D. LIFECYCLES

1. Application

Android implements the principle of least privilege;

each application lives in its own security sandbox. Android

applications run in their own Linux process, isolated by

default from all other applications. Android will start a

new process whenever any application component is executed

and then shuts it down when no longer needed, or when in a

low memory condition.

The application’s lifecycle is not directly controlled

by the application; instead it is controlled by the system

 69

based on the system’s knowledge of running components, the

priority of those components, and the overall availability

of system memory.

2. Activity

Each Activity may exist in one of three states:

Resumed, Paused, or Stopped. An Activity that is in the

Resumed state is running, is in the foreground, and has

user focus. An Activity that is paused is no longer in the

foreground, and does not have focus, but is still partially

visible because the Activity that is in the foreground does

not completely obscure it. An Activity that is Stopped is

completely obscured by another activity. Activities that

are in the Paused or Stopped state are still retained in

memory and maintain all state and member information, but

may be killed by the system in low memory situations.

In order to control how an Application handles the

transition between these states, each Application must

implement certain lifecycle callbacks. Figure 35 shows the

Android activity lifecycle. By default, a new Subclass of

Activity will override the onCreate() method and provide a

hook to choose the XML layout that will be associated with

that activity. All other lifecycle callbacks must be

specifically overridden to provide custom features to the

Activity.

 70

 Application Lifecycles (From [18]) Figure 35.

User nav gates
to the activity

Activity
launched

onCreate()

on Start()

on Resume()

Activity
running

T
Another activ ty oomes

into the foreground

• Apps with higher pr ority
need memory -- on Pause()

I
The actJVity s

no longer vis ble

• on Stop()

I
_j

The act:vity s fin shir g or
be.ng destroyed by the system

• on Destroy()

Activity
shutdown

User returns
to the activity

J

on Restart()

User nav gates
to the activ ty

 71

a. onCreate

The onCreate() method is called when an activity

is first created; it should be used for static setup, such

as binding views and instantiating or reading data received

from other Activities. In the Beating Heart application, we

call the getExtras() and setConnections() methods in the

onCreate() call.

b. onRestart

The onRestart() method is only called after the

Activity has been stopped and just prior to being started

again.

c. onStart

The onStart() method is the last callback before

the activity becomes visible to the user.

d. onResume

The onResume() method is called when the Activity

is at the top of the activity stack and is visible. When it

returns, the user will be able to interact with the

activity.

e. onPause

The onPause() method is called when the system is

about to start or resume another activity. It is used to

store unsaved changes to persistent data and stop

animations and other CPU intensive activities to persistent

data. This method is the last lifecycle callback that an

activity is guaranteed to have called before the

application can be killed by the system. It is important to

 72

ensure that this method runs quickly, as it will block new

activities from becoming active until it completes, thus

affecting overall user experience.

f. onStop

The onStop() method is called after the activity

is no longer visible, either because it is being destroyed

or because another activity is completely obscuring it from

view. This method is not guaranteed to be called, so it

should not be used to store critical data or state, but may

be used to perform certain non-essential shutdown tasks.

g. onDestroy

The onDestroy() method is called prior to the

activity being destroyed. It is the final call the activity

will receive. As in the onStop() method, this method is not

guaranteed to be called, so actions should be limited to

non-essential tasks.

h. onSaveInstanceState

Activities that are moved to the background

maintain state in one of two ways: they are retained in

memory, and thus never lose state, or they are destroyed

and recreated in which they must restore a previously saved

state. The onSaveInstanceState() method is called before

the activity is eligible for destruction, typically before

onStop(), sometimes before onPause(). This method, by

default, will save the state of the various UI elements as

long as they have been assigned a unique identifier,

typically within the XML layout document. The default

functionality will not save model data, and thus must be

 73

overridden in order to ensure that any critical model state

remains intact as an activity is destroyed and recreated.

It is important to note that this method is not guaranteed

to be called, so the storage of persistent data, such as

data stored in a file or a database should be handled in

the onPause() method.

E. CONCLUSION

By understanding the similarities in navigation

concepts between iOS and Android, developers will be able

to identify common tasks and correlate them to individual

screens that may be implemented on either platform.

Implementing the MVC pattern in Android will

accentuate the similarities between iOS ViewControllers and

Android Activities. Each screen in an application will

consist of a single ViewController or Activity with an

associated layout document containing a list of View

objects.

Lifecycle callback methods are implemented slightly

differently between iOS and Android; but by understanding

when these methods are called, developers can maintain many

similarities between the platforms.

In Chapter VI, describes a process in which

applications may be designed in such a way that they may be

implemented on either platform. We followed this method

developing an application for Naval Postgraduate School

students to read important notifications and conduct daily

muster using either an iPhone or Android device. We will

use this application and its associated design documents to

detail the process.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

VI. DESIGN PROCESS

We have created a design process that will enable

mobile application developers to create a single set of

design documents that may in turn be implemented on either

the Android or the iOS platform. The process begins by

breaking a set up requirements into a set up actions, or

tasks, which the user will be expected to be able to

accomplish, and then building those tasks into a set of

individual screens that will be realized in the

application. We will rely on the Model, View, Controller

pattern to design individual screens, and our previous

discussions on stack and horizontal navigation to design

our application’s navigation flow. This chapter will

detail the process that we follow, describe the design

documents that we create, and show real world application

of the process as we build the NPS Muster application,

which could be used for NPS students to conduct daily

musters, read announcements, and access other relevant

student information via NPS intranet.

A. IDENTIFY REQUIREMENTS

To begin the design process, developers must identify

the requirements for any application they wish to build.

The processes involved in this step may vary drastically

between design teams and is not integral to this thesis. It

is only important to note that at the end of this step the

developer should have a reasonable understanding of the

application requirements.

We envisioned the concept of our example application

based on requirements that we have as students at the Naval

 76

Postgraduate School (NPS). We are required to conduct an

online muster, or check-in, every weekday. The muster is

completed through the verification of a captcha image to

ensure that students are not using automated programs to

conduct musters on their behalf. In conjunction with that

muster, we must read through a page of announcements of

various importance, some of which change from day to day.

We often found ourselves referencing resources from the

campus intranet in conjunction with our daily musters.

From our experience with the traditional method of

mustering we identified the requirements listed in Table 1.

Well thought out and understood requirements provide a

necessary base and starting point for our design process.

The developer may not be required to identify these

requirements, but should seek an active role in

understanding and clarifying them with the customer.

Requirement Comments

1. Provide Credentials Users must enter username /
password combination in order to
use the application.

2. Store Credentials Users are given the option to store
username or username and password.

3. View Announcements Users should be able to view all
active announcements.

4. Sort Announcements Announcements should be sorted by
priority.

5. Mark Announcements as Read Announcements that have already
been read should be marked as such.

6. Read All Announcements Students are expected to read each
announcement before being allowed
to muster.

7. Prevent Automatic Mustering Students must not be provided the
capability to automatically muster
each day, they must physically
conduct the muster on their device

 77

each day.

8. Show Muster Status Upon logging in, student should be
notified of current muster status.

9. Complete Daily Muster If not currently mustered for the
day, students should be allowed to
conduct muster from the
application.

10. Provide Intranet Access Using credentials stored from
current user session, provide
students access to NPS Intranet
resources.
Note: this is a low priority
requirement

Table 1. NPS Muster Application Requirements

B. IDENTIFY TASKS

After identifying the requirements for a new

application, developers should begin reviewing the

processes, or tasks, that will be required to fulfill these

requirements. A task is a simple action that a user would

be expected to accomplish as a step to complete a

requirement. Tasks may correspond to requirements in a

variety of ways. They may serve as a stepping-stone to

fulfill a single requirement, multiple requirements, or as

a bridge between multiple requirements. Tasks should always

align with one or more requirements, otherwise the

application will experience design drift, or “requirements

creep,” and begin to include extraneous functionality.

One example of a task in the NPS Muster Application

would be “Log in”. Users are asked to provide their

individual NPS username and password combination in order

to use this application. This task aligns with the Provide

Credentials and Store Credentials requirements. Table 2

provides a complete list of our identified tasks for the

NPS Muster Application. Listing all the tasks and the

 78

related requirements helps to ensure that the application

meet all the requirements.

Task Requirements Comments

Login 1 and 2 User is provided
ability to enter
username and password
and options to store
credentials for future
usage.

Read Announcements 3, 4, 5, and 6 A student will be
presented a list of
announcements that are
sorted by read status
and priority. The
application has
limited functionality
if any announcements
are not marked as
read.

Muster 7, 8, and 9 The user is notified
of current muster
status. If the user is
not currently
mustered, then provide
a method in which the
user must manually
interact with the
application in order
to change the status
to ‘Mustered.’

Intranet Access 10 NPS intranet requires
users to enter
credentials. This Task
will provide
streamlined access to
intranet resources
using credentials
stored only for this
session.

Table 2. NPS Muster Application Tasks

C. IDENTIFY REQUIRED SCREENS

Once developers have identified the tasks which users

are expected to accomplish using the application, they

 79

should focus on designing basic, platform independent,

versions of individual screen UIs. These screens should

focus on accomplishing the identified tasks outlined in the

previous step. This process will help developers understand

how they expect their users to interact with each of their

screens.

Due to limited screen size of mobile devices, many

tasks may need to be broken into smaller sub-tasks. This

may often result in multiple screens being required to

accomplish a single task. A common occurrence of this is

reading through a list of related items that may offer more

detail than is presented in the list. This type of task is

often handled by building a screen with a list and a screen

that displays details of individual items.

Some screens may allow the completion of multiple

tasks. Tasks are often so interrelated that it becomes

impossible to separate them into individual screens. This

is acceptable, but should be designed carefully. Too many

tasks on one screen can result in a cluttered UI and user

confusion. It is our recommendation that, whenever

possible, a screen should be designed to accomplish a

single task.

Identifying screens in this manner helps the developer

modularize the code and allows for a minimalistic approach

to programming. Only the code related to the interaction

with the screen should appear in the controller. It also

helps the developer identify and push logic code into the

models. This will be discussed in detail later.

 80

1. Login Screen

Using our previously identified Tasks for the NPS

Muster Application, we chose to begin designing a screen

based on our first task: “Log In” we chose to create a

basic layout with text fields for username and password, a

submit button, and check boxes, the latter allowing the

user to choose whether credentials are saved between

sessions. Figure 36 shows our UI design document for the

login screen of the NPS Muster application.

 Login Screen Design Document Figure 36.

2. Announcement Screen

We decided that the “Read Announcements” task would

best be handled by breaking the task into subtasks. There

are many active announcements at any given time and we

wanted to display a list of current announcements in a

 81

sorted order. This requirement is best handled by

implementing a list to view the announcements. We realized

that the list items are best suited to display basic

information regarding each announcement, such as title,

priority, and date. The details of each announcement would

require a separate screen containing the body text and

additional information. Figure 37 and Figure 38 describe

the Announcement List screen and Announcement Details

screen, respectively.

 Announcement List Design Document Figure 37.

 82

 Announcement Detail Design Document Figure 38.

3. Muster Screen

The Muster task requires that we display the user’s

current muster status, provide a method in which the user

may complete the daily muster, and prevent the user from

doing so in an automated manner. The current web version of

the muster application utilizes a captcha text with which a

user must verify some visual text that would be difficult

for a computer to recognize. This function is necessary

because without the captcha it is relatively simple to

write an automated script that could complete the muster on

behalf of a student. The secure nature of Android and iOS

applications prevents such automatic intrusion. We chose to

simplify the process by requiring that a user simply press

a button that becomes active only when the user has not

been mustered for the day. In future iterations of the

application, if additional precautions are required, we

 83

could simply remove the functionality which allows users to

save their credentials to their device, a more secure

option in any case. Figure 39 shows the design document for

the NPS Muster Application muster screen.

 Muster Screen Design Document Figure 39.

4. Intranet Screen

The intranet screen becomes a simple, yet versatile

webview that will facilitate the use of other resources

available on the NPS Intranet. We facilitate access by

providing session credentials to access the site, but limit

browser functionality to back and forward navigation.

Figure 40 shows the Intranet Screen Design Document.

 84

 Intranet Screen Design Document Figure 40.

D. DESIGN NAVIGATION HIERARCHY

After identifying the screens that will be used to

accomplish the required tasks, the developer must identify

how those screens will interact with one another and the

order they will be shown. Understanding these interactions

will drive the overall flow of the application and play an

integral role in understanding how data will be shared

between the screens. This section relates to earlier

discussions about navigation concepts. The vast majority of

applications will rely on some form of Stack Navigation,

while others will utilize Horizontal Navigation. Most

applications that rely on Horizontal Navigation will also

include some form of Stack Navigation, resulting in the

reliance upon a form of Composite Navigation structure.

 85

1. Identify How Screens Will Interact

Screens should be viewed as loosely coupled and self-

contained. Not all screens, however, can operate

independently, and thus require some form of input

arguments. In some cases, a screen may be used to

accomplish a task, or sub-task, by a parent screen. This

requires the capability of returning data to the parent

screen. This feature is often realized in situations where

a detail screen is opened by a list screen to modify an

element of the list.

We found the process of actually arranging our screens

into user-friendly navigation hierarchies to be somewhat

challenging. Continuously redrawing flow charts proved to

take a large amount of time. We began using a storyboard

concept, paper printouts of our individual screens, which

we were able to rearrange to simulate stepping a user

through the application. This gave us a feel for how we

wanted the application to flow, and began giving us insight

as to what data should be passed between our screens.

For the NPS Muster Application, we found that our

Login screen functioned well as a gateway, preventing

unauthorized users from proceeding beyond that screen. We

chose to set that screen as the start screen. Every time a

user opens the application, they are shown the login screen

and have to enter their credentials and manually press a

button to proceed. Based on the concept of using the Login

screen as a gateway we found that it made sense to

implement Stack Navigation from this point, pushing the

next screen on top of the Login screen.

 86

Once a user logs-in, there are a few loosely related

tasks the user could perform: Muster, View Announcements,

or Access Intranet. Based on these tasks, which have been

identified as screens, we decided that a Horizontal

Navigation concept would work well to allow the user to

quickly switch between these functional tasks. We decided

to implement a tab bar that would contain each of these

screens as children. Due to the nature of Horizontal

Navigation and our requirement that all announcements must

be read before allowing a user to muster, we identified a

need for each screen in the resulting composite hierarchy

to “know” the state of unread announcements.

Another reason we chose to use screen printouts as

storyboards is the fluidity with which a developer may

manage early prototypes of the UI flow. Developers may

proceed through several versions of early prototypes,

called Rapid Prototyping, and even identify additional

required screens, all without writing any code. Assuming

that the developer is writing an application based on a set

of customer requirements, this step also facilitates

communication between developers and customers by ensuring

that the developer and customer agree on the final outcome

of the UI flow and functionality. Once the general flow of

the application has been established, it is time to begin

translating it into a more formalized document.

2. Draw UI Navigation Diagram

Once a developer has laid out the navigation flow for

an application, he or she should formalize a UI Navigation

Diagram. This diagram will ensure that the navigation flow

of the application is followed throughout the rest of the

 87

design process as well as providing developers a clear

picture of the flow of the entire application.

The UI Navigation Diagram not only provides insight

into the flow of the application, but also aids in

identifying Controller and View classes that will need to

be implemented in later steps. Figure 41 displays our UI

Navigation Diagram for the NPS Muster Application.

 UI Navigation Diagram Figure 41.

3. Draw a Data Flow Diagram

After drawing the initial UI Navigation Diagram,

developers should begin mapping out the data flows that

correspond to the navigation flow. While screens are mostly

independent, they may require certain inputs from parent

and child screens. In order to later classify the data

elements that should be shared between screens, we overlaid

 88

a Data Flow Diagram on the Navigation Diagram (Figure 42).

This diagram shows only the flow of required data, it does

not classify the data into model objects at this point.

Later, we will use this diagram to begin identifying model

objects.

 Data Flow and Navigation Diagram Figure 42.

E. DESIGN CLASSES

After visualizing the overall flow of the application,

both in terms of screen navigation and data flow, it is

necessary to begin identifying and designing the specific

components and classes that will be used to build the

screens and represent the data. The goal is to apply the

MVC pattern to each screen; in order to do this, the

developer should rely on the UI Navigation Diagram and the

Data Flow Diagram to identify Model, View, and Controller

objects. First we will use the UI Navigation Diagram to

 89

identify View and Controller objects, and then we will use

the Data Flow Diagram to identify the required Model

objects. Once we have identified the required classes we

will focus on the intricacies of each individual class,

ensuring that the models are defined in such a way that

they may be implemented regardless target of platform. We

will show how to design Controllers in such a way as to

accentuate the similarities of target platform

implementation while minimizing the differences. We seek to

maintain as much similarity as possible when implementing

Views, but also ensure that they align with platform design

philosophies, ensuring that the user is presented with a

platform specific experience, thereby conforming as much as

reasonably possible to the “look-and-feel” of applications

that the user expects when using the specific platform.

1. Models

Model objects may be written in such a way that the

class variables and methods are consistent across

platforms. Other than obvious language differences, models

should be designed to function exactly the same, regardless

of platform. Developers can expect that the controller’s

interaction with a model’s methods will be the same despite

the underlying code. When properly designed, the models

should be viewed as black boxes, always taking correct

inputs and giving expected outputs.

To begin identifying required Model objects, the

developer should begin with the Data Flow Diagram. When

data is passed between screens, if the data is not

primitive, it should be passed as a Model. Models may exist

in the scope of a single screen, never being shared with

 90

another screen; these models are much harder to identify.

It should be the goal of the developer to wrap data objects

into logical models with specific functions. For example,

the Beating Heart application held a single Model that was

shared between multiple screens in order to accentuate the

concept of the MVC pattern. Not every application is that

simple; there may exist any number of Models associated

with any number of screens. Model objects may actually be

composed of several other models.

In order to simplify this discussion we sought to

utilize only one model object that would hold all of the

required data and provide the majority of the required

logic for the NPS Muster Application.

a. Profile

We chose to create a Profile class to act as a

single, overarching model for the entire application. This

class would contain all functionality and data required

throughout the application. It is in fact, a composite

model, as it would also contain other model objects for use

in different screens. The model would initially be created

the first time the user logged in, passed to various

screens, and subsequently stored for future sessions. This

class would contain all data and logic required by the user

to verify and store credentials, review announcements,

muster, and access intranet resources. Figure 43 shows the

class diagram for the Profile class.

 91

 Profile Class Diagram Figure 43.

b. Announcement

The Announcement class will be used to contain

the data and associated logic of a single announcement.

These model objects will be contained in an array held by

the Profile. The Announcement model acts mostly as a data

container, but contains logic required to compare itself to

the online version of itself to determine whether it has

been updated on the remote database. Announcements will be

synchronized to the device and updated when the user logs-

in. The model objects will contain an algorithm that

compares the local version of the announcement to the

version stored in a remote server. As long as no changes

are present, then the announcement will retain its read

status, if changes are present, the announcement will

 92

update itself displaying a not read status. Figure 44 shows

the class diagram for Announcement.

 Announcement Class Diagram Figure 44.

2. Views

Views follow the Composite design pattern; when

organized into hierarchies, groups of views become a

composite view or a view layout. We chose not to rely on

class diagrams to represent our views layouts. In our final

step, implementation, we utilized the WYSIWYG editors

included in Xcode and Eclipse to design platform specific

view hierarchies. Using the included interface editors

ensures that the developer is creating a UI that aligns

with the suggested guidelines set forth by the platform

designers.

 93

3. Controllers

Each screen consists of a Controller and an associated

View hierarchy. Each screen requires a Controller class to

be designed for it. Controllers are implemented differently

between iOS and Android platforms, and thus present much

more variation between platform implementations than Model

objects. We mitigated these differences by identifying

three functional areas common to Controllers in either

platform. As such, each Controller consists of a Lifecycle,

an Interface, and a Logic section. The Lifecycle allows the

controller to determine when the screen it is controlling

is active, when it is in the foreground or background, or

when it is being removed. The Interface determines how the

Controller will connect to, and interact with, the

associated View hierarchy. The Logic section determines how

the Controller interacts with, and modifies, any associated

Models.

We first utilized a separate class diagram for each

platform when designing our Controllers. Later we were able

to merge these diagrams, but it is essential to understand

the concept of the separate documents before utilizing the

unified diagram. Figure 45 presents the separate class

diagram for Android and iOS Login Controllers.

 94

 Separated Login Controller Diagrams Figure 45.

a. Lifecycles

The lifecycles of Android activities and iOS

controllers are noticeably different. Android relies

heavily on the concept of Activity lifecycles where iOS

provides simple callbacks that indicate when the controller

is initialized, loads, or unloads. While the actual

lifecycles are rather different, the underlying

functionality is relatively similar. The Android onCreate()

method equates to the iOS Init methods and should be used

for completing setup actions prior to presenting the screen

to the user. The onResume() method may be equated to the

iOS viewDidLoad() method and is called immediately after

the screen becomes visible to the user. The onPause()

method, being the last method an Android activity is

guaranteed to receive, should be equated to the

 95

viewDidUnload() method in iOS; it should be used to conduct

shutdown actions such as saving persistent data.

b. Interface

iOS and Android again differ in how their

controller objects establish connections to their

respective View objects. Android first loads the associated

XML layout file in the onCreate() method and then

establishes references to individual View objects inside

the Controller object. We found it very simple to compose

these functions into a single method we called

setConnections(), Figure 46 shows an example

setConnections() method from our LoginController.

 Android setConnections Method Figure 46.

After initially establishing connections we

needed to assign functionality to our View objects. Android

Controller objects are responsible for responding to click

events of View objects. In order to do this, the Controller

object must establish an onClickListener which performs

some action when it receives the onClick() event from the

associated View object. Again we found that it was simple

 96

to establish all onClickListeners in a single method we

named setOnClickListeners(). Figure 47 displays an example

setOnClickListeners() function from the LoginController

class. The method is very simple; the user is expected to

enter required credentials and then press the login button.

The LoginController waits for the onClick() event from that

button and then executes the login() method.

 Android setOnClickListener Method Figure 47.

When creating interfaces in iOS, the developer

must create and define each object. The objects are

typically created in IB and defined in the header and

implementation files as an IBOutlet. After these objects

have been created the developer can link the objects to the

implementations in the code. In order to do this, the

developer must use the drag-and-drop functionality of IB.

If the ViewController has been linked to the ViewController

Class files correctly, there will be a list of Outlets in

the file inspector. Figure 48 shows how a developer would

link the password UITextField for the NPS Muster

Application.

 97

 iOS IBOutlet Link Figure 48.

Upon completion of this step, the ViewController

has have full access to the UITextField and can manipulate

it as the ViewController logic dictates.

Additionally, when a developer adds a button or

some other object that links to a method, a process similar

to linking objects is used to connect the object to code.

An IBAction will be declared in the header file and defined

in the implementation file. A similar drag-and-drop method

is used to connect the method to the button. Figure 49

shows the drag-and-drop linking of the login method with

the login button. After the drag-and-drop action, the

developer is presented with a drop down list of events.

This includes all the events that the button can handle.

The most common event for a button to handle is the “Touch

Up Inside” event. The “Touch Up Inside” event acts when a

user presses and lifts his or her finger to the screen

within the area of the UIButton.

 98

 iOS IBAction Linking Figure 49.

c. Logic

The implementation of the underlying logic is the

section that is most similar between iOS and Android

Controller objects. The logic is contained in the .java

(Android) and .m (iOS) files, respectively, that implement

the Controller classes. If the Model objects are correctly

designed it is easy to separate out the logic required to

manipulate them in the Controller class.

In an independent Android application the

onClickListeners may run whatever code the developer

desires. iOS View objects, however, require specific

target actions. By first identifying the required

IBActions, it is straightforward to port those identified

methods to Android. The Android onClickListener should call

the same method in the onClick() callback as its iOS

counterpart does in the associated View object’s IBAction.

In addition to responding to user interactions, a

Controller object is also responsible for supplying the

 99

screen with required information. To this end, we developed

a setView() method, which when called, should refresh the

screen, ensuring that each individual View object is

populated with the correct information.

It is important to note, that due to language

differences, the code inside each method will be written

somewhat differently between platforms. The underlying

functionality should be largely the same, and many

algorithms may still be reused at a more abstract level.

d. Unified Controller Diagram

The Login Controller class is implemented very

differently between platforms but by identifying the

functional areas we were able to simplify the design

document to include only the essentials required to relay

the design to a coder. It is important to note that the

document, depicted in Figure 50, would prove difficult to

leverage for a coder who is unfamiliar with the specific

design concepts portrayed in Figure 45, the separated login

controller diagrams.

 100

 Login Controller Unified Diagram Figure 50.

F. IMPLEMENTATION

Mobile applications are GUI intensive and focus on the

user experience and interaction. We find that, using the

documents described above, it is often easier to build an

application utilizing a top-down approach in which the View

and Controller objects are first implemented with enough

functionality to exercise the required navigation

hierarchy. After the proper flow of the application has

been tested, required methods may be fleshed-out to provide

actual functionality to the screens. The following sections

will detail the process of building the NPS Muster

application based on the respective design documents.

1. Create a New Project

Create a new Android project in Eclipse by selecting

the menu items File -> New -> Android Project. On the

 101

Create Android Project Screen, choose a project name [we

chose NPS Muster] leave all other options default [we chose

to work with Android 1.6 in order to ensure maximum

compatibility with older Android devices, but note that

this choice will limit certain functionalities available in

later versions], click next. Specify your package name in

the Application Info screen, we chose edu.nps.muster.

Ensure that the check box next to “Create Activity” is

checked and specify the name of your main activity, for

this we chose LoginController, deviating from standard

Android naming conventions for the purpose of highlighting

similarities between platforms. Leave all other options

default and click finish, there will now be a new project,

“NPS Muster,” in the Package Explorer. Two files will be

created, one in the src -> edu.nps.muster folder,

LoginController.java, and one in the res -> layout folder,

main.xml. We recommend renaming the main.xml file to

loginview.xml.

To Create a new iOS project a developer would select

“New Project...” from the File -> New menu. At this point

Xcode gives the developer a choice of templates to begin

the project. These templates offer a starting point for the

iOS project and include implementation and header files, a

nib file and, often times, a rootViewController. Depending

on the design documents and developer preference, these

templates may be a good place to start. However, in the NPS

Muster Application we started with the empty application

template. This option offers the most flexibility for

developer customization. After choosing a template the

developer is asked to enter the desired application name,

NPS Muster, and company identifier. The company identifier

 102

is similar to the Android package name. We used

edu.nps.muster for the company identifier. (Note: the

company identifier must match the company identifier that

is registered with the provisioning profile, otherwise the

application cannot be loaded to the test device) After the

necessary information is entered, the project will be

created by the IDE.

2. Add Required Controllers and Views

Android and iOS add screens slightly differently.

Android requires that each Controller and XML layout are

created individually, while iOS provides all files required

to implement a screen in a simple wizard.

Android provides the main screen, including both

the .java and XML layout file, with every new project; in

order to add new screens to a project, one must add a new

Controller and a new XML layout. To add a new Controller,

right click the src -> edu.nps.muster folder and select New

-> Class. Change the name to correspond with a Controller

in the class diagrams and click “finish.” Figure 51 shows

the default Activity Android provides with a new project,

Figure 52 shows a new class before being tailored by the

developer.

 103

 Default Android Activity Figure 51.

 Default Android Class Figure 52.

View layouts may be created in Eclipse through the

Graphical Layout Editor. This editor provides drag-and-drop

functionality by which different View objects may be

arranged visually on the screen. Additionally, it provides

direct access to the XML document, allowing developers to

modify elements in a very precise manner.

XML layout documents for Android projects are stored

in the res -> layout folder. To create a new document,

right click on the res -> layout folder, select New ->

Other -> Android -> Android XML Layout File. Choose a name

that corresponds to a controller with which the new layout

should be associated. New View layouts are created with a

simple LinearLayout to which other Views will be added.

Figure 53 shows the newly created loginview.xml.

 104

 Default View XML Figure 53.

Each controller should be modified in order to align

with its associated class diagram. Open the .java file by

double clicking the file name in the project tree. Add the

setConnections() and setOnClickListener() methods and call

them in the onCreate() lifecycle callback. Move the

setContentView(R.layout.loginview) call into the

setConnections() method. Repeat this process for each

screen in the application. Figure 54 shows an Android

controller object after it has been modified according to

using these steps. We recommend adding comments to

delineate the functional areas of the controller.

 105

 Android Functional Areas Figure 54.

1 package edu . nps . mus t er ;
2
3@ import andro i d . app .Activity;
5
6 publ ic class Logi nCont r oller extends Activity {
7
8~ / ***

9 • J,..~k
10 ***/

11
12 / ** Called when t he activity i s f irst creat ed . * /

13
14>" @Overri de
15 public void onCr eat e (Bund l e savedi ns t anceSt at e) {
16 super . onCreat e (savedi ns t anceSt at e) ;
17
18
19
20
21 }
22

set Connections () ;
set OnClickl i s t ener s () ;

23 7• @Overri de
24 publ ic void onSt ar t (){
25 super . onSt ar t () ;
26 }
27
28c< @Overri de
29 public void onPause(){
30 super . onPause () ;
31 }
32
33
3~~ / ***

35 * Int erface
36 ***/

37
38c< pr i vat e void set Connections () {
39 set Cont ent Vi ew(R . l ayout . Loginv iew) ;
40
41 }
42
43 7• privat e void set OnClickl i s t ener s () {
44 I I TODO Auto-gener ated method stub
45
46 }
47
48
49 / ***

50 * Log i c
51 ***/

52
53 }
54

 106

In iOS, when using the empty application template, the

developer is given only the appDelegate header and

implementation files. The first step in adding a new screen

is to choose the “New File” option from the File -> New

menu. This will give the developer the options as to what

type of file to add. Since we are trying to add a new view

and viewController, choose the UIViewController Subclass

option. In the next option window ensure that the selected

subclass is UIViewController, not UITableViewController,

and that the “With xib for User Intereface” option is

checked. Give the file a name and choose create. This

process should be repeated for each of the screens needed

for the project. For screens that require a table or list

of options, like the announcementList, choose to subclass

as a UITableViewController in the second setup window.

Figures 55 and 56 show the default header and

implementation files, respectively, provided by Xcode.

 Default iOS Header File Figure 55.

 107

 Default iOS Implementation File Figure 56.

When we modify the iOS controller code to show the

lifecycle, logic, and interface functional areas, we found

that the header file contained the interface and the

implementation file contained the logic and lifecycle

methods, which can be broken up as shown in Figure 57.

 108

 iOS Functional Areas Figure 57.

At this point the developer can begin to build the

interface functional area by defining IBOutlets and

IBActions in the header file. The IBOutlets and IBActions

should be added to align with the objects and methods

defined in the unified controller diagram. The IBActions do

not need to be fully defined in the implementation file;

however, it is good to use stub-code as placeholders. Once

all the necessary interface objects and methods are defined

the developer can begin linking objects and functions, as

 109

previously shown. The header file, which contains the

interface functional area for the iOS login screen, is

shown in Figure 58.

 iOS LoginController header file Figure 58.

3. Edit Required Views

Each screen will require a View hierarchy associated

with a Controller object. As Views align with platform

specifications and appearance, developers may expect

individual Views to differ between platforms. Attempts

should be made to maintain a common “feel” while fully

embracing the individual platform user experience, that is,

the target platform “look-and-feel.” Figures 59 and 60

show the finished loginview.xml, in XML and graphically,

respectively.

 110

 Finished View Code Figure 59.

 Finished View Graphical Figure 60.

 111

Editing the nib files is all done using the IB. IB

provides the developer a graphical view of the display and

a list of objects that can be added to the screen. The

developer then selects and edits each object’s placement,

size, and visual options. This step must be completed

before the developer can link IBOutlets and IBActions,

previously shown in Figures 48 and 49.

4. Implement Navigation

The Login screen will be required to push another

screen on top of it upon the user’s successful login to the

network. The LoginController class diagram calls for a

login() method which will use the Profile model to verify

credentials and, if successful, allow the user to proceed

to the next screen. We had not implemented the Profile

class at this point in the development, so the proper

functionality was assumed in this step.

To implement the navigation portion of this process in

Android, reference the login button from the XML layout in

the setConnections() method, add the login() method in the

logic section of the LoginController, and call it in the

onClickListener of the Login button. At this point the

logic and interface sections in LoginController.java should

look like Figure 61.

 112

 LoginController Code Figure 61.

The screen pushed on top of the Login screen is part

of a horizontal navigation structure. We must ensure that

the horizontal navigation is implemented correctly and that

all child screens are also properly represented. Again, at

this point actual functionality of individual screens is

not required; we are focusing simply on ensuring proper

navigation-flow throughout the application. We used pseudo-

functions that simulated the data received from the models

 113

to ensure that the navigation could be tested, without

first having to develop the models.

As stated previously, Android implements a subclass of

TabActivity to implement any required tabs. We chose to

name our subclass TabController. In order to create this

controller, follow the procedure outlined above for

creating a new class and modify it to align with Figure 62.

TabActivities require a specific view layout, which

includes a TabHost that will be modified through code. Use

Figure 63 as a template when creating view layouts

associated withTabActivities.

 114

 TabController Code Figure 62.

1 package edu . nps . mus t er ;
2
3@ import edu , nps , must er , R;Q
9

10 public class TabCont r oller extends TabActivity {
11
12°•
13
14
15
16°•
17
18
19
20
21

~
23
24°•
25
26
27
28
29
30° •
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

~
50
51
52

~
54

55
56
57
58
59 }
60

/ ***

• J,.ilirn:J~
***/

public void onCr eat e (Bund l e savedi ns t anceSt at e) {
super . onCreat e (savedi ns t anceSt at e) ;
t his , r equest Ni ndowFeat ur e (Ni ndow, FEATURE_ NO_ TITLE);

set Connections () ;

}

/ ***

* Int erface
***/

TabHost mTabHost ;

pr i vat e void set Connections () {

}

set Cont entVi ew(R . l ayout . tabv iew) ;
mTabHost = get TabHost () ;
I nt ent i nt ent ;

II Setup for Announcement Tab (Tab 0}
i nt ent = new I nt ent () . set Cl ass (t his , Announcement Cont roller .class) ;
mTabHost .addTab(mTabHost . newTabSpec ("Announcement s")

.set i nd i cat or("Announcement s ") . set Cont ent (i nt ent)) ;

II Setup for Muster Tab (Tab 1)
i nt ent = new I nt ent () . set Cl ass (t his , Mus t erCont roller .class) ;
mTabHost .addTab(mTabHost . newTabSpec ("Must er ") , set i 1di cat or("Must er ")

.set Cont ent (i nt ent)) ;

II Setup for~ Tab (Tab 2)
i nt ent = new I nt ent () . set Cl ass (t his , I nt r anet Cont roller .class) ;
mTabHost .addTab(mTabHost . newTabSpec ("Int r anet")

.set i nd i cat or("Int r anet") ,set Cont ent (i nt ent)) ;

II Set Tab host to Announcement Tab
mTabHost .set Current Tab(0) ;

/ ***

* logi c
***/

 115

 TabController View Code Figure 63.

The first step in implementing navigation

on iOS is to edit the appDelegate. In the

application:didFinishLaunchingWithOptions:launchOptions

function, which is show in Figure 64, we have instantiated

a LoginController and set it as the rootController for the

application. This step will set the LoginController as the

first screen to be shown upon application startup.

 116

 NPS Muster Application AppDelegate Figure 64.

If the entire navigation scheme of the application is

stack based, the rootController will be the only controller

needed. Likewise, if the navigation scheme is solely

horizontal, only a tabViewController will need to be

implemented. However, in the NPS Muster application we use

a composite navigation scheme. Our design process required

a complicated combination of stack and horizontal

navigation. While this implementation is not preferred by

the Apple UI Guidelines, we chose this layout because it

followed our UI Navigation Diagram, Figure 41.

In order to accomplish our composite navigation, we

had to write our own subclass of tabViewController.

Creating a new UIViewController and defining it as a

UITabBarDelegate can accomplish this. Figure 65 shows the

header file for our tabController. Line 16 shows how we

defined the tabController as a UITabBarDelegate.

 117

 iOS TabController Header File Figure 65.

After we defined the UITabBarDelegate, we implemented

the tab interaction logic, shown in Figure 66. The tab

interaction logic handles the touch events that correspond

to screen selection, as shown.

 118

 iOS TabBar Interaction Code Figure 66.

We also created our own initialization method so that

the loginController could pass the profile to the

tabController, as shown in Figure 67. This step allowed our

application to have access to the profile regardless of the

tab selected. This is not the only way to implement this

functionality, but is the way we chose to implement the

profile passing. We chose this method of passing the model

because it more closely aligned with the Android getExtra()

implementation.

 iOS initWithProfile Figure 67.

 119

At this point, we needed to stub the loginControllers

login function so that we could implement the transition

between the rootController and the tabController. Figure 68

shows the stub-code to accomplish the transition.

 iOS Stubbed Login Method Figure 68.

5. Implement Models

Implementation of Model classes is straight forward on

either platform, and requires almost no deviation from the

design documents. When coding, developers can expect to

experience minor language differences that may require

slight modifications, but the overall structure of the

class should remain intact. Also, with the difference in

APIs, the developer may encounter other significant issues.

For instance, the timer class in Android is based on

milliseconds, while the iOS timer is based on seconds.

Failure to account for such differences can result in

significant application functional discrepancies, and even

application failure.

Below are several examples of functions we have

implemented in our Profile and Announcement classes. These

functions provide the majority of functionality and all of

 120

the data storage requirements for the application. This

offloads the requirement from the Controller objects,

allowing Controllers to be focused solely on controlling

View and Model objects.

Figure 69 and 70 are the hasReadAnnounce() methods in

the Profile class. Is scans through the Profile’s array of

announcements and checks for unread announcements. These

code-snippets also serve to highlight the similarity and

differences in the languages used for each platform. The

underlying logic is consistent.

 hasReadAnnounce() Android Method Figure 69.

 hasReadAnnounce iOS Method Figure 70.

Figure 71 and 72 are the muster() methods. It utilizes

the PythonDBAdapter class to conduct a muster with the

 121

remote database. A successful muster attempt returns

current date and time, an unsuccessful muster returns the

last muster date and time.

 muster() Android Method Figure 71.

 muster iOS Method Figure 72.

Figure 73 and 74 are the updateAnnounce() methods.

Each takes an announcement object recently retrieved from

the remote database and compares it to itself. This is only

necessary due to limitations with the database schema with

which we worked.

 122

 updateAnnounce() Android Method Figure 73.

165
166- public boolean updateAnnounce(Announce~ent a){
167 boolean exists • false;
168 if(a.getDbiD() •• this .dbiD){
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215 }

//Announcement already exists
exists • true;
//If Titles don't aatch.
if(!a.getTitle().equals(this .getTitle())){

this .setTitle(a.getTitle());

isRead • false;
}

//If Bodies don't match.
if(! a.getBody() .equals(this .getBody())){

t his .setBody(a.getBody());
isRead • fal se;

}

//If More don't match.
if(la .getMore() .equal s(t his .getMore())){

t his .setMore(a .getMore()) ;
isRead • false ;

}

//If StartDates don ' t match .
if(la .getStartDate() .equa l s (t his .get St ar t Dat e())){

t his . setStartDat e (a .getStar t Date()) ;
isRead • false ;

}

//If endDates don't match.
if(! a. getEndDate() . equals(this . getEndDat e())){

this .setEndDate(a .getEndDat e()) ;
isRead • false;

}

//If PubDates don't Match.
if(!a .getPubDate() .equals(this .getPubDat e())){

this .setPubDate(a.getPubDate()) ;
isRead • false;

}

//If isUrgent don't •atch.
if (! a. isUrgent == t his . isUrgent){

this .setUrgent(a. isUrgent);
isRead • false;

}

216 return exists;
217 }
218

 123

 updateAnnounce iOS Method Figure 74.

152 - (Boo lean) updat eAnnounce : (Announcement *) a {
153 Boo lean ex i sts = f a l s e ;
154
155 i f{ a . ge t Db iD == db I D) {
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

}

ex i sts = true ;

II Check i f Tit le s Mat ch
i f{ ! ((a ge tTit le1 i sEqua l : title 1) {

(s elf s e tTi tle : (a ge tTi tle 1 1;
i s Read = f a l s e ;

}

II Check i f Bod ie s Mat ch
i f { ! ((a ge t 8ody1 i sEqua l : body1) {

(s elf s e t Body : (a ge t Body11 :
i s Read = f a l s e ;

}

II Check i f More Announcement s Mat ch
i f{ ! ((a ge t More 1 i sEqua l : more 1) {

(s elf s e t More : (a ge t More 1 1;
i s Read = f a l s e ;

}

II Check i f St art Da t e s ma t ch .
i f { ! ((a ge t St art Da t e 1 i sEqua l : s t art Da t e 1) {

(s elf s e t St art Da t e : (a ge t St art Da t e 1 1;
i s Read = f a l s e ;

}

II Check i f endDa t e s ma t ch .
i f{ ! ((a ge t EndDat e 1 i sEqua l : endDa t e 1) {

(s elf s e t EndDa t e : (a ge t EndDa t e 1 1;
i s Read = f a l s e ;

}

II Check i f PubDa t e s ma t ch .
i f{ ! ((a ge t PubDat e 1 i sEqua l : pubDa t e 1) {

(s elf s e t PubDa t e : (a ge t PubDa t e 1 1;
1sKead = t a l s e ;

}

II Check i f i s Urgent s mat ch .
i f{ ! { (a getisUrge nt 1 == i s Urgent)) {

(s elf s e t i s Urge nt : (a ge t i s Urgent 11 :
i s Read = f a l s e ;

}

202 return ex i sts;
203 }
204

 124

6. Add Functionality

After implementing the models, it is time to tie

everything together. The Controller will tie the Models

together with the Views. The Controller will respond to

user actions as received by View objects and modify the

Models as required to produce necessary functionality. At

this point, the developer should be able to use the various

Models and their methods to complete the desired actions.

In Figures 60 and 68 of the implement navigation

section there is a login function that uses the stub-code,

if(true). That code was used to test the navigation. Since

the Models have been completed the developer can now

replace that stub-code with the profile method calls. The

Android stub-code can be replaced with

if(profile.login(username, password)) as displayed in

Figure 75 and the iOS code can be replaced with if([profile

login:username:password]) as displayed in Figure 76.

 login() Android Method Figure 75.

 125

 login iOS Method Figure 76.

We also need to finish our setView() method, Figure 77

and 78 shows these completed methods.

 setView() Android Method Figure 77.

 setView iOS Method Figure 78.

This process should be repeated for each Controller

class. After all controllers have been modified and fitted

 126

with proper functionality, then it is time to begin testing

on each platform, followed by deployment.

G. CONCLUSION

The design process we have described will aid

developers in minimizing the design process when creating

applications for multiple platforms. This process in no way

seeks to replace a solid understanding of either platform;

rather, it seeks to provide a common approach with which a

developer may build and maintain applications across

multiple platforms. Even with language differences and some

implementation differences, the applications should align

to at least the screen level, if not to the method level.

Once the application is built on either platform, the

developer should have much less difficulty maintaining a

consistent set of features between the platforms. Further,

such consistency is beneficial to the maintenance of the

applications following deployment; it is well established

within the software engineering domain that the bulk of a

software project’s expense is associated with the

maintenance or post-development phase.

 127

VII. SUMMARY AND CONCLUSION

Cross-platform mobile application development can

benefit from a common design process. Since such

development needs to span language barriers, developers

cannot share code modules between platforms. Therefore, we

introduced common design concepts, such as Screens and

Stack, Horizontal, and Composite Navigation. We also showed

how to apply the Model-View-Controller (MVC) design pattern

to the Android platform in order to apply a Unified Design

Process.

Functionality that is common across all platforms

should be replicated in Model Logic and written as

similarly as possible, despite language differences. By

using the MVC pattern in the early design phase, a majority

of the application logic can be pushed into Model objects.

These Models are simple to implement and only require the

developer to do simple language translations for each

platform. The Controller classes in our projects became the

bridge between the screens and the Models. By eliminating

the interaction between Models and Views we were able to

separate out the UI design phase and ensure that each

platform was designed according to separate UI Guidelines.

This provides users with a platform specific look-and-feel

while maintaining similar functionality between platforms.

We also identified functional areas that help

developers determine which sections of the controllers can

be directly translated. However, due to API differences

there are minor issues with direct translations. Our

research also found that due to the nature of the Android

 128

back stack and its inability to branch, the implementations

of composite navigation would differ slightly.

Each application project, while different, has many

common concepts and patterns. The application of these

common ideas in our Unified Design Process will reduce the

amount of time that is spent in the design phase of

application development.

A. FUTURE WORK

Our design process has been tested only on numerous

simple applications with limited feature set and a capstone

project that incorporated more advanced functionality

combinations. While the process provides promising results,

there still remains a substantial amount of work to do

before it can be widely acceptable. The following sections

discuss future areas that still require focus.

1. Security

Little effort was made during our development process

to implement solid security measures. We relied on the

secure nature of the platforms we were using to implement

our designs. Security in any application, let alone one

that is intended to connect to DoD systems, must include a

robust security model. Future research should focus on

security patterns that may be implemented in mobile

applications, regardless of targeted platform.

2. Synchronizing Announcements

We introduced the concept of synchronizing

announcements to a mobile device from a remote server.

While we did implement an algorithm capable of managing

 129

this process, we find that it is far from efficient. We

suggest that future researchers look into the possible use

of a hashing function for announcements or some other form

of announcement comparison. We believe that patterns may be

developed to encompass such actions on a more abstract

layer, for example a synchronization pattern may be

developed that defines how a developer may synchronize two

data elements between a remote location and a local device.

3. Additional Platforms

We limited the scope of this thesis to two platforms,

iOS and Android. It would be interesting to explore the

viability of applying this design process to additional

platforms, such as Windows Phone and Symbian. We are

confident that the design process is applicable to any

mobile platform or highly UI intensive cross-platform

application.

4. System Login

During the actual development of the NPS Muster

application, we were unable to gain access to a system that

would allow for the verification of user credentials. We

currently simulate this feature with test methods that

return either true or false values. If the NPS Muster

application is to be deployable it must have a way to

validate user credentials with the current user directory

and network access control schema in use at the Naval

Postgraduate School.

 130

5. Web Services

We also considered the use of web services as a means

of cross-platform programming. Hosting services on a server

would require a developer to create a service and an

interface for each platform. There are certain limitations

to this concept, such as application functionality in

offline environments, as well additional security concerns.

If those issues were to be controlled in some manner,

offloading certain application logic to web services would

reduce code duplication and simplify maintainability.

6. Cross-Platform Programming with Web Applications

Another viable solution to the cross-platform

programming domain is the use of Web Applications. With the

current shift of the Internet to HTML5, the mobile device’s

web browser becomes a portal into the world of

applications. We conducted some initial research on the use

of Web Applications to accomplish the “design-once”

philosophy, but decided we did not want to use a “neutral”

UI, one that is exactly the same on all devices and does

not adhere to any specific UI guidelines. Our intent was to

focus on maintaining the platform specific UIs and their

associated “look-and-feel.”

7. Cross-Platform Programming with OpenGL

Similar to the concept of using Web Applications that

are applicable regardless of platform, we envisioned the

use of OpenGL to facilitate another “design-once” concept.

OpenGL is supported on both Android and iOS. Therefore, it

 131

is possible that if an application is designed and built

using only OpenGL constructs it can be run on both

platforms.

 132

THIS PAGE INTENTIONALLY LEFT BLANK

 133

LIST OF REFERENCES

[1] Google, Inc. Platform versions. [Online]. Available:
http://developer.android.com/resources/dashboard/platf
orm-versions.html

[2] Google, Inc. What is Android? [Online]. Available:
http://developer.android.com/guide/basics/what-is-
android.html

[3] M. Cleron. (2007). Androidology - Architecture
overview. [Video File]. Available:
http://www.youtube.com/watch?v=Mm6Ju0xhUW8

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA: Addison-Wessley Longman
Publishing Co, Inc, 1995.

[5] S. Burbek. Application Programming in Smalltalk-80:
How to Use Model-View-Controller (MVC), 1997 [Online].
Available: http://st-
www.cs.illinois.edu/users/smarch/st-docs/mvc.html

[6] Google, Inc. View. [Online]. Available:
http://developer.android.com/reference/android/view/Vi
ew.html, [Nov. 14, 2011].

[7] Apple, Inc. UIView Class Reference, 2001. [Online].
Available:
https://developer.apple.com/library/ios/#documentation
/UIKit/Reference/UIView_Class/UIView/UIView.html

[8] Google, Inc. Activities. [Online]. Available:
http://developer.android.com/guide/topics/fundamentals
/activities.html

[9] Apple, Inc. About View Controllers. [Online].
Available:
https://developer.apple.com/library/ios/#featuredartic
les/ViewControllerPGforiPhoneOS/Introduction/Introduct
ion.html

 134

[10] Apple, Inc. Tab Bar Controllers. [Online]. Available:
https://developer.apple.com/library/ios/#documentation
/WindowsViews/Conceptual/ViewControllerCatalog/Chapter
s/TabBarControllers.html#//apple_ref/doc/uid/TP4001131
3-CH3-SW1

[11] Apple, Inc. Combined View Controller Interfaces.
[Online]. Available:
https://developer.apple.com/library/ios/#documentation
/WindowsViews/Conceptual/ViewControllerPGforiOSLegacy/
CombiningViewControllers/CombiningViewControllers.html
#//apple_ref/doc/uid/TP40011381-CH104-SW1

[12] Apple, Inc. Model-View-Controller. [Online].
Available:
https://developer.apple.com/library/ios/#documentation
/General/Conceptual/DevPedia-CocoaCore/MVC.html

[13] Apple, Inc. UIWindow Class Reference. [Online].
Available:
https://developer.apple.com/library/ios/#documentation
/UIKit/Reference/UIWindow_Class/UIWindowClassReference
/UIWindowClassReference.html

[14] Apple, Inc. App States and Multitasking. [Online].
Available:
https://developer.apple.com/library/ios/#documentation
/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYo
urApplicationsFlow/ManagingYourApplicationsFlow.html

[15] Apple, Inc. UIApplication Class Reference. [Online].
Available:
https://developer.apple.com/library/ios/#documentation
/UIKit/Reference/UIApplication_Class/Reference/Referen
ce.html

[16] Apple, Inc. The View Controller Lifecycle. [Online].
Available:
https://developer.apple.com/library/ios/#featuredartic
les/ViewControllerPGforiPhoneOS/ViewLoadingandUnloadin
g/ViewLoadingandUnloading.html

[17] Google, Inc. Tasks and Back Stacks. [Online].
Available:
http://developer.android.com/guide/topics/fundamentals
/tasks-and-back-stack.html

 135

[18] Google, Inc. Activity. [Online]. Available:
http://developer.android.com/reference/android/app/Act
ivity.html

 136

THIS PAGE INTENTIONALLY LEFT BLANK

 137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

